




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
昌图县一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 求值: =( )Atan 38BCD2 已知集合,则( )A B C D【命题意图】本题考查集合的交集运算,意在考查计算能力3 数列an满足a1=3,ananan+1=1,An表示an前n项之积,则A2016的值为( )ABC1D14 已知函数关于直线对称 , 且,则的最小值为 A、 B、C、D、5 已知aR,复数z=(a2i)(1+i)(i为虚数单位)在复平面内对应的点为M,则“a=0”是“点M在第四象限”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件6 设是两个不同的平面,是一条直线,以下命题正确的是( )A若,则 B若, ,则 C若,则 D若,则7 已知ABC中,a=1,b=,B=45,则角A等于( )A150B90C60D308 函数在一个周期内的图象如图所示,此函数的解析式为( )A B C D9 点集(x,y)|(|x|1)2+y2=4表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是( )ABCD10已知直线mxy+1=0交抛物线y=x2于A、B两点,则AOB( )A为直角三角形B为锐角三角形C为钝角三角形D前三种形状都有可能11已知函数f(x)=lg(1x)的值域为(,1,则函数f(x)的定义域为( )A9,+)B0,+)C(9,1)D9,1)12在区域内任意取一点P(x,y),则x2+y21的概率是( )A0BCD二、填空题13在ABC中,若a=9,b=10,c=12,则ABC的形状是 14若函数为奇函数,则_【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力15已知数列an中,2an,an+1是方程x23x+bn=0的两根,a1=2,则b5=16在ABC中,角A,B,C所对的边分别为a,b,c,若ABC不是直角三角形,则下列命题正确的是(写出所有正确命题的编号)tanAtanBtanC=tanA+tanB+tanCtanA+tanB+tanC的最小值为3tanA,tanB,tanC中存在两个数互为倒数若tanA:tanB:tanC=1:2:3,则A=45当tanB1=时,则sin2CsinAsinB17已知定义在R上的奇函数满足,且时,则的值为 18已知圆C1:(x2)2+(y3)2=1,圆C2:(x3)2+(y4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值三、解答题19设函数f(x)=x36x+5,xR()求f(x)的单调区间和极值;()若关于x的方程f(x)=a有3个不同实根,求实数a的取值范围20求下列曲线的标准方程:(1)与椭圆+=1有相同的焦点,直线y=x为一条渐近线求双曲线C的方程(2)焦点在直线3x4y12=0 的抛物线的标准方程21已知一个几何体的三视图如图所示()求此几何体的表面积;()在如图的正视图中,如果点A为所在线段中点,点B为顶点,求在几何体侧面上从点A到点B的最短路径的长22已知命题p:x22x+a0在R上恒成立,命题q:若p或q为真,p且q为假,求实数a的取值范围23如图,在三棱柱ABCA1B1C1中,AA1C1C是边长为4的正方形平面ABC平面AA1C1C,AB=3,BC=5()求证:AA1平面ABC;()求证二面角A1BC1B1的余弦值;()证明:在线段BC1上存在点D,使得ADA1B,并求的值24(本题满分14分)在中,角,所对的边分别为,已知(1)求角的大小; (2)若,求的取值范围【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力昌图县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解: =tan(49+11)=tan60=,故选:C【点评】本题主要考查两角和的正切公式的应用,属于基础题2 【答案】C【解析】当时,所以,故选C3 【答案】D【解析】解:a1=3,ananan+1=1,得,a4=3,数列an是以3为周期的周期数列,且a1a2a3=1,2016=3672,A2016 =(1)672=1故选:D4 【答案】D【解析】:5 【答案】A【解析】解:若a=0,则z=2i(1+i)=22i,点M在第四象限,是充分条件,若点M在第四象限,则z=(a+2)+(a2)i,推出2a2,推不出a=0,不是必要条件;故选:A【点评】本题考查了充分必要条件,考查了复数问题,是一道基础题6 【答案】111【解析】考点:线线,线面,面面的位置关系7 【答案】D【解析】解:,B=45根据正弦定理可知 sinA=A=30故选D【点评】本题主要考查正弦定理的应用属基础题8 【答案】B【解析】考点:三角函数的图象与性质9 【答案】A【解析】解:点集(x,y)|(|x|1)2+y2=4表示的图形是一条封闭的曲线,关于x,y轴对称,如图所示由图可得面积S=+=+2故选:A【点评】本题考查线段的方程特点,由曲线的方程研究曲线的对称性,体现了数形结合的数学思想10【答案】A【解析】解:设A(x1,x12),B(x2,x22),将直线与抛物线方程联立得,消去y得:x2mx1=0,根据韦达定理得:x1x2=1,由=(x1,x12),=(x2,x22),得到=x1x2+(x1x2)2=1+1=0,则,AOB为直角三角形故选A【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直11【答案】D【解析】解:函数f(x)=lg(1x)在(,1)上递减,由于函数的值域为(,1,则lg(1x)1,则有01x10,解得,9x1则定义域为9,1),故选D【点评】本题考查函数的值域和定义域问题,考查函数的单调性的运用,考查运算能力,属于基础题12【答案】C【解析】解:根据题意,如图,设O(0,0)、A(1,0)、B(1,1)、C(0,1),分析可得区域表示的区域为以正方形OABC的内部及边界,其面积为1;x2+y21表示圆心在原点,半径为1的圆,在正方形OABC的内部的面积为=,由几何概型的计算公式,可得点P(x,y)满足x2+y21的概率是=;故选C【点评】本题考查几何概型的计算,解题的关键是将不等式(组)转化为平面直角坐标系下的图形的面积,进而由其公式计算二、填空题13【答案】锐角三角形【解析】解:c=12是最大边,角C是最大角根据余弦定理,得cosC=0C(0,),角C是锐角,由此可得A、B也是锐角,所以ABC是锐角三角形故答案为:锐角三角形【点评】本题给出三角形的三条边长,判断三角形的形状,着重考查了用余弦定理解三角形和知识,属于基础题14【答案】2016【解析】因为函数为奇函数且,则由,得,整理,得15【答案】1054 【解析】解:2an,an+1是方程x23x+bn=0的两根,2an+an+1=3,2anan+1=bn,a1=2,a2=1,同理可得a3=5,a4=7,a5=17,a6=31则b5=217(31)=1054故答案为:1054【点评】本题考查了一元二次方程的根与系数的关系、递推关系,考查了推理能力与计算能力,属于中档题16【答案】 【解析】解:由题意知:A,B,C,且A+B+C=tan(A+B)=tan(C)=tanC,又tan(A+B)=,tanA+tanB=tan(A+B)(1tanAtanB)=tanC(1tanAtanB)=tanC+tanAtanBtanC,即tanA+tanB+tanC=tanAtanBtanC,故正确;当A=,B=C=时,tanA+tanB+tanC=3,故错误;若tanA,tanB,tanC中存在两个数互为倒数,则对应的两个内角互余,则第三个内角为直角,这与已知矛盾,故错误;由,若tanA:tanB:tanC=1:2:3,则6tan3A=6tanA,则tanA=1,故A=45,故正确;当tanB1=时, tanAtanB=tanA+tanB+tanC,即tanC=,C=60,此时sin2C=,sinAsinB=sinAsin(120A)=sinA(cosA+sinA)=sinAcosA+sin2A=sin2A+cos2A=sin(2A30),则sin2CsinAsinB故正确;故答案为:【点评】本题以命题的真假判断为载体,考查了和角的正切公式,反证法,诱导公式等知识点,难度中档17【答案】【解析】1111试题分析:,所以考点:利用函数性质求值18【答案】54 【解析】解:如图,圆C1关于x轴的对称圆的圆心坐标A(2,3),半径为1,圆C2的圆心坐标(3,4),半径为3,|PM|+|PN|的最小值为圆A与圆C2的圆心距减去两个圆的半径和,即:4=54故答案为:54【点评】本题考查圆的对称圆的方程的求法,考查两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力,考查数形结合的数学思想,属于中档题三、解答题19【答案】 【解析】解:()当,f(x)的单调递增区间是,单调递减区间是当;当()由()的分析可知y=f(x)图象的大致形状及走向,当的图象有3个不同交点,即方程f(x)=有三解20【答案】 【解析】解:(1)由椭圆+=1,得a2=8,b2=4,c2=a2b2=4,则焦点坐标为F(2,0),直线y=x为双曲线的一条渐近线,设双曲线方程为(0),即,则+3=4,=1双曲线方程为:;(2)由3x4y12=0,得,直线在两坐标轴上的截距分别为(4,0),(0,3),分别以(4,0),(0,3)为焦点的抛物线方程为:y2=16x或x2=12y【点评】本题考查椭圆方程和抛物线方程的求法,对于(1)的求解,设出以直线为一条渐近线的双曲线方程是关键,是中档题21【答案】 【解析】解:()由三视图知:几何体是一个圆锥与一个圆柱的组合体,且圆锥与圆柱的底面半径为2,母线长分别为2、4,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和S圆锥侧=222=4;S圆柱侧=224=16;S圆柱底=22=4几何体的表面积S=20+4;()沿A点与B点所在母线剪开圆柱侧面,如图:则AB=2,以从A点到B点在侧面上的最短路径的长为222【答案】 【解析】解:若P是真命题则=44a0a1; (3分)若q为真命题,则方程x2+2ax+2a=0有实根,=4a24(2a)0,即,a1或a2,(6分)依题意得,当p真q假时,得a; (8分)当p假q真时,得a2(10分)综上所述:a的取值范围为a2(12分)【点评】本题考查复合函数的真假与构成其简单命题的真假的关系,解决此类问题应该先求出简单命题为真时参数的范围,属于基础题23【答案】 【解析】(I)证明:AA1C1C是正方形,AA1AC又平面ABC平面AA1C1C,平面ABC平面AA1C1C=AC,AA1平面ABC(II)解:由AC=4,BC=5,AB=3AC2+AB2=BC2,ABAC建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),设平面A1BC1的法向量为,平面B1BC1的法向量为=(x2,y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省合江中学2026届化学高二上期中经典模拟试题含解析
- 江苏省重点中学2026届化学高二上期中达标检测试题含解析
- 银行公司住宿标准管理规定
- 小说基本概念解读
- 政务中心面试常见问题与答案详解
- 行业趋势分析:公务员面试题库热 门职业趋势解读
- 揭秘深交所面试全攻略:从题目到答案全覆盖
- 涉爆人员管理方案(3篇)
- 江苏省节能方案(3篇)
- 馄饨团购配送方案(3篇)
- 钢板桩支护计算书全套
- 广西贺州市2022-2023学年八年级下册期末物理试卷(含答案)
- 台州市开发投资集团有限公司招聘笔试题库2024
- DL∕T 5344-2018 电力光纤通信工程验收规范
- 14生活日用品的联想 (教案)人美版美术四年级上册
- CH+8016-1995全球定位系统(GPS)测量型接收机检定规程
- DL-T5493-2014电力工程基桩检测技术规程
- 人教版2024年小学升学考试数学模拟测试卷(共5套)(含答案解析)
- 医院系统瘫痪应急预案
- 光伏项目技术标准清单
- 117湖南省怀化市雅礼实验学校2023-2024学年七年级下学期开学考试数学试题
评论
0/150
提交评论