瑞昌市一中2018-2019学年上学期高二数学12月月考试题含解析_第1页
瑞昌市一中2018-2019学年上学期高二数学12月月考试题含解析_第2页
瑞昌市一中2018-2019学年上学期高二数学12月月考试题含解析_第3页
瑞昌市一中2018-2019学年上学期高二数学12月月考试题含解析_第4页
瑞昌市一中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

瑞昌市一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 如图所示,已知四边形的直观图是一个边长为的正方形,则原图形的周长为( ) A B C. D2 某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( )A80B40C60D203 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:性别是否需要志愿者男女需要4030不需要160270由算得附表:参照附表,则下列结论正确的是( )有以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无关”; 有以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有关”;采用系统抽样方法比采用简单随机抽样方法更好;采用分层抽样方法比采用简单随机抽样方法更好;A B C D4 下列语句所表示的事件不具有相关关系的是( )A瑞雪兆丰年B名师出高徒C吸烟有害健康D喜鹊叫喜5 函数f(x)=Asin(x+)(A0,0)的部分图象如图所示,则f()的值为( )AB0CD6 已知三棱柱 的侧棱与底面边长都相等,在底面上的射影为的中点, 则异面直线与所成的角的余弦值为( ) A B C. D7 某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( )A36种B38种C108种D114种8 设定义在R上的函数f(x)对任意实数x,y,满足f(x)+f(y)=f(x+y),且f(3)=4,则f(0)+f(3)的值为( )A2B4C0D49 全称命题:xR,x20的否定是( )AxR,x20BxR,x20CxR,x20DxR,x2010抛物线y=8x2的准线方程是( )Ay=By=2Cx=Dy=211已知集合,则( )A B C D【命题意图】本题考查集合的交集运算,意在考查计算能力12某公园有P,Q,R三只小船,P船最多可乘3人,Q船最多可乘2人,R船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( )A36种B18种C27种D24种二、填空题13二项式展开式中,仅有第五项的二项式系数最大,则其常数项为14已知z是复数,且|z|=1,则|z3+4i|的最大值为15已知实数x,y满足约束条,则z=的最小值为16设实数x,y满足,向量=(2xy,m),=(1,1)若,则实数m的最大值为17在中,角、所对应的边分别为、,若,则_18在极坐标系中,曲线C1与C2的方程分别为2cos2=sin与cos=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1与C2交点的直角坐标为三、解答题19在ABC中,内角A,B,C所对的边分别为a,b,c,已知sinAsinC(cosB+sinB)=0(1)求角C的大小; (2)若c=2,且ABC的面积为,求a,b的值20已知函数f(x)=x2ax+(a1)lnx(a1)() 讨论函数f(x)的单调性;() 若a=2,数列an满足an+1=f(an)(1)若首项a1=10,证明数列an为递增数列;(2)若首项为正整数,且数列an为递增数列,求首项a1的最小值 21已知Sn为等差数列an的前n项和,且a4=7,S4=16(1)求数列an的通项公式;(2)设bn=,求数列bn的前n项和Tn22设定义在(0,+)上的函数f(x)=,g(x)=,其中nN*()求函数f(x)的最大值及函数g(x)的单调区间;()若存在直线l:y=c(cR),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,求n的最大值(参考数据:ln41.386,ln51.609)23(本小题满分12分)的内角所对的边分别为,垂直.(1)求的值;(2)若,求的面积的最大值.24【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=ax2+lnx(aR)(1)当a=时,求f(x)在区间1,e上的最大值和最小值;(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)g(x)f2(x),那么就称g(x)为f1(x),f2(x)的“活动函数”已知函数.。若在区间(1,+)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围瑞昌市一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】考点:平面图形的直观图.2 【答案】B【解析】解:要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,三年级要抽取的学生是200=40,故选:B【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果3 【答案】D 【解析】解析:本题考查独立性检验与统计抽样调查方法由于,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,正确;该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,正确,选D4 【答案】D【解析】解:根据两个变量之间的相关关系,可以得到瑞雪兆丰年,瑞雪对小麦有好处,可能使得小麦丰收,名师出高徒也具有相关关系,吸烟有害健康也具有相关关系,故选D【点评】本题考查两个变量的线性相关关系,本题解题的关键是根据实际生活中两个事物之间的关系确定两个变量之间的关系,本题是一个基础题5 【答案】C【解析】解:由图象可得A=, =(),解得T=,=2再由五点法作图可得2()+=,解得:=,故f(x)=sin(2x),故f()=sin()=sin=,故选:C【点评】本题主要考查由函数y=Asin(x+)的部分图象求函数的解析式,属于中档题6 【答案】D【解析】考点:异面直线所成的角.7 【答案】A【解析】解:由题意可得,有2种分配方案:甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法根据分步计数原理,共有323=18种分配方案甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共323=18种分配方案由分类计数原理,可得不同的分配方案共有18+18=36种,故选A【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法8 【答案】B【解析】解:因为f(x)+f(y)=f(x+y),令x=y=0,则f(0)+f(0)=f(0+0)=f(0),所以,f(0)=0;再令y=x,则f(x)+f(x)=f(0)=0,所以,f(x)=f(x),所以,函数f(x)为奇函数又f(3)=4,所以,f(3)=f(3)=4,所以,f(0)+f(3)=4故选:B【点评】本题考查抽象函数及其应用,突出考查赋值法的运用,判定函数f(x)为奇函数是关键,考查推理与运算求解能力,属于中档题9 【答案】D【解析】解:命题:xR,x20的否定是:xR,x20故选D【点评】这类问题的常见错误是没有把全称量词改为存在量词,或者对于“”的否定用“”了这里就有注意量词的否定形式如“都是”的否定是“不都是”,而不是“都不是”特称命题的否定是全称命题,“存在”对应“任意”10【答案】A【解析】解:整理抛物线方程得x2=y,p=抛物线方程开口向下,准线方程是y=,故选:A【点评】本题主要考查抛物线的基本性质解决抛物线的题目时,一定要先判断焦点所在位置11【答案】C【解析】当时,所以,故选C12【答案】 C【解析】排列、组合及简单计数问题【专题】计算题;分类讨论【分析】根据题意,分4种情况讨论,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,P船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,P船乘1个大人和2个小孩共3人,Q船乘2个大人,分别求出每种情况下的乘船方法,进而由分类计数原理计算可得答案【解答】解:分4种情况讨论,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,有A33=6种情况,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,有A33A22=12种情况,P船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,有C322=6种情况,P船乘1个大人和2个小孩共3人,Q船乘2个大人,有C31=3种情况,则共有6+12+6+3=27种乘船方法,故选C【点评】本题考查排列、组合公式与分类计数原理的应用,关键是分析得出全部的可能情况与正确运用排列、组合公式二、填空题13【答案】70 【解析】解:根据题意二项式展开式中,仅有第五项的二项式系数最大,则n=8,所以二项式=展开式的通项为Tr+1=(1)rC8rx82r令82r=0得r=4则其常数项为C84=70故答案为70【点评】本题考查二项式定理的应用,涉及二项式系数的性质,要注意系数与二项式系数的区别14【答案】6 【解析】解:|z|=1,|z3+4i|=|z(34i)|z|+|34i|=1+=1+5=6,|z3+4i|的最大值为6,故答案为:6【点评】本题考查复数求模,着重考查复数模的运算性质,属于基础题15【答案】 【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由z=32x+y,设t=2x+y,则y=2x+t,平移直线y=2x+t,由图象可知当直线y=2x+t经过点B时,直线y=2x+t的截距最小,此时t最小由,解得,即B(3,3),代入t=2x+y得t=2(3)+3=3t最小为3,z有最小值为z=33=故答案为:【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法16【答案】6 【解析】解: =(2xy,m),=(1,1)若,2xy+m=0,即y=2x+m,作出不等式组对应的平面区域如图:平移直线y=2x+m,由图象可知当直线y=2x+m经过点C时,y=2x+m的截距最大,此时z最大由,解得,代入2xy+m=0得m=6即m的最大值为6故答案为:6【点评】本题主要考查线性规划的应用,利用m的几何意义结合数形结合,即可求出m的最大值根据向量平行的坐标公式是解决本题的关键17【答案】【解析】因为,所以,所以,所以答案: 18【答案】(1,2) 【解析】解:由2cos2=sin,得:22cos2=sin,即y=2x2由cos=1,得x=1联立,解得:曲线C1与C2交点的直角坐标为(1,2)故答案为:(1,2)【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题三、解答题19【答案】 【解析】(本题满分为12分)解:(1)由题意得,sinA=sin(B+C),sinBcosC+sinCcosBsinCcosBsinBsinC=0,(2分)即sinB(cosCsinC)=0,sinB0,tanC=,故C=(6分)(2)ab=,ab=4,又c=2,(8分)a2+b22ab=4,a2+b2=8由,解得a=2,b=2(12分)【点评】本题主要考查了三角形内角和定理,三角函数恒等变换的应用,三角形面积公式,余弦定理在解三角形中的综合应用,考查了转化思想,属于基础题20【答案】 【解析】解:(),(x0),当a=2时,则在(0,+)上恒成立,当1a2时,若x(a1,1),则f(x)0,若x(0,a1)或x(1,+),则f(x)0,当a2时,若x(1,a1),则f(x)0,若x(0,1)或x(a1,+),则f(x)0,综上所述:当1a2时,函数f(x)在区间(a1,1)上单调递减,在区间(0,a1)和(1,+)上单调递增;当a=2时,函数(0,+)在(0,+)上单调递增;当a2时,函数f(x)在区间(0,1)上单调递减,在区间(0,1)和(a1,+)上单调递增()若a=2,则,由()知函数f(x)在区间(0,+)上单调递增,(1)因为a1=10,所以a2=f(a1)=f(10)=30+ln10,可知a2a10,假设0akak+1(k1),因为函数f(x)在区间(0,+)上单调递增,f(ak+1)f(ak),即得ak+2ak+10,由数学归纳法原理知,an+1an对于一切正整数n都成立,数列an为递增数列(2)由(1)知:当且仅当0a1a2,数列an为递增数列,f(a1)a1,即(a1为正整数),设(x1),则,函数g(x)在区间上递增,由于,g(6)=ln60,又a1为正整数,首项a1的最小值为6【点评】本题考查导数的运用:求单调区间,同时考查函数的零点存在定理和数学归纳法的运用,考查运算能力,属于中档题选做题:本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分7分如果多做,则按所做的前两题计分【选修4-2:矩阵与变换】21【答案】 【解析】解:(1)设等差数列an的公差为d,依题意得(2分)解得:a1=1,d=2an=2n1(2)由得(7分)(11分)(12分)【点评】本题考查等差数列的通项公式的求法及数列的求和,突出考查裂项法求和的应用,属于中档题22【答案】 【解析】解:()函数f(x)在区间(0,+)上不是单调函数证明如下,令 f(x)=0,解得当x变化时,f(x)与f(x)的变化如下表所示:xf(x)+0f(x)所以函数f(x)在区间上为单调递增,区间上为单调递减所以函数f(x)在区间(0,+)上的最大值为f()=g(x)=,令g(x)=0,解得x=n当x变化时,g(x)与g(x)的变化如下表所示:x(0,n)n(n,+)g(x)0+g(x)所以g(x)在(0,n)上单调递减,在(n,+)上单调递增()由()知g(x)的最小值为g(n)=,存在直线l:y=c(cR),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,即en+1nn1,即n+1(n1)lnn,当n=1时,成立,当n2时,lnn,即0,设h(n)=,n2,则h(n)是减函数,继续验证,当n=2时,3ln20,当n=3时,2ln30,当n=4时, ,当n=5时,ln51.60,则n的最大值是4【点评】本题考查了导数的综合应用及恒成立问题,同时考查了函数的最值的求法,属于难题23【答案】(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论