固安县三中2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
固安县三中2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
固安县三中2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
固安县三中2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
固安县三中2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

固安县三中2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若直线与曲线:没有公共点,则实数的最大值为( )A1BC1D【命题意图】考查直线与函数图象的位置关系、函数存在定理,意在考查逻辑思维能力、等价转化能力、运算求解能力2 直线x+y1=0与2x+2y+3=0的距离是( )ABCD3 已知函数f(x)=ax+b(a0且a1)的定义域和值域都是1,0,则a+b=( )ABCD或4 已知函数y=x3+ax2+(a+6)x1有极大值和极小值,则a的取值范围是( )A1a2B3a6Ca3或a6Da1或a25 已知双曲线(a0,b0)的右焦点F,直线x=与其渐近线交于A,B两点,且ABF为钝角三角形,则双曲线离心率的取值范围是( )ABCD6 已知曲线C1:y=ex上一点A(x1,y1),曲线C2:y=1+ln(xm)(m0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|e恒成立,则m的最小值为( )A1BCe1De+17 一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )AB(4+)CD8 定义在1,+)上的函数f(x)满足:当2x4时,f(x)=1|x3|;f(2x)=cf(x)(c为正常数),若函数的所有极大值点都落在同一直线上,则常数c的值是( )A1B2C或3D1或29 用反证法证明命题:“已知a、bN*,如果ab可被5整除,那么a、b 中至少有一个能被5整除”时,假设的内容应为( )Aa、b都能被5整除Ba、b都不能被5整除Ca、b不都能被5整除Da不能被5整除10已知x0,y0, +=1,不等式x+y2m1恒成立,则m的取值范围( )A(,B(,C(,D(,11设命题p:函数y=sin(2x+)的图象向左平移个单位长度得到的曲线关于y轴对称;命题q:函数y=|2x1|在1,+)上是增函数则下列判断错误的是( )Ap为假Bq为真Cpq为真Dpq为假12已知直线l平面,P,那么过点P且平行于l的直线( )A只有一条,不在平面内B只有一条,在平面内C有两条,不一定都在平面内D有无数条,不一定都在平面内二、填空题13二面角l内一点P到平面,和棱l的距离之比为1:2,则这个二面角的平面角是度14在(1+x)(x2+)6的展开式中,x3的系数是15设f(x)是定义在R上的周期为2的函数,当x1,1)时,f(x)=,则f()=16若P(1,4)为抛物线C:y2=mx上一点,则P点到该抛物线的焦点F的距离为|PF|=17【徐州市2018届高三上学期期中】已知函数(为自然对数的底数),若,则实数 的取值范围为_18已知函数f(x)=,则关于函数F(x)=f(f(x)的零点个数,正确的结论是(写出你认为正确的所有结论的序号)k=0时,F(x)恰有一个零点k0时,F(x)恰有2个零点k0时,F(x)恰有3个零点k0时,F(x)恰有4个零点三、解答题19如图,在四棱锥PABCD中,平面PAB平面ABCD,ABCD,ABAD,CD=2AB,E为PA的中点,M在PD上(I)求证:ADPB;()若,则当为何值时,平面BEM平面PAB?()在(II)的条件下,求证:PC平面BEM20如图的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm)(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结BC,证明:BC面EFG 21在ABC中,内角A,B,C的对边分别为a、b、c,且bsinA=acosB(1)求B;(2)若b=2,求ABC面积的最大值22某运动员射击一次所得环数X的分布如下:X0678910P00.20.30.30.2现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为(I)求该运动员两次都命中7环的概率;()求的数学期望E23如图,四边形是等腰梯形,四边形 是矩形,平面,其中分别是的中点,是的中点(1)求证: 平面;(2)平面. 242015年第7届女足世界杯在加拿大埃德蒙顿联邦体育场打响,某连锁分店销售某种纪念品,每件纪念品的成本为4元,并且每件纪念品需向总店交3元的管理费,预计当每件纪念品的售价为x元(7x9)时,一年的销售量为(x10)2万件()求该连锁分店一年的利润L(万元)与每件纪念品的售价x的函数关系式L(x);()当每件纪念品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值固安县三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】令,则直线:与曲线:没有公共点,等价于方程在上没有实数解假设,此时,又函数的图象连续不断,由零点存在定理,可知在上至少有一解,与“方程在上没有实数解”矛盾,故又时,知方程在上没有实数解,所以的最大值为,故选C 2 【答案】A【解析】解:直线x+y1=0与2x+2y+3=0的距离,就是直线2x+2y2=0与2x+2y+3=0的距离是: =故选:A3 【答案】B【解析】解:当a1时,f(x)单调递增,有f(1)=+b=1,f(0)=1+b=0,无解;当0a1时,f(x)单调递减,有f(1)=0,f(0)=1+b=1,解得a=,b=2;所以a+b=;故选:B4 【答案】C【解析】解:由于f(x)=x3+ax2+(a+6)x1,有f(x)=3x2+2ax+(a+6)若f(x)有极大值和极小值,则=4a212(a+6)0,从而有a6或a3,故选:C【点评】本题主要考查函数在某点取得极值的条件属基础题5 【答案】D【解析】解:函数f(x)=(x3)ex,f(x)=ex+(x3)ex=(x2)ex,令f(x)0,即(x2)ex0,x20,解得x2,函数f(x)的单调递增区间是(2,+)故选:D【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目6 【答案】C【解析】解:当y1=y2时,对于任意x1,x2,都有|AB|e恒成立,可得: =1+ln(x2m),x2x1e,01+ln(x2m),lnxx1(x1),考虑x2m1时1+ln(x2m)x2m,令x2m,化为mxexe,xm+令f(x)=xexe,则f(x)=1exe,可得x=e时,f(x)取得最大值me1故选:C7 【答案】 D【解析】解:由三视图知,几何体是一个组合体,是由半个圆锥和一个四棱锥组合成的几何体,圆柱的底面直径和母线长都是2,四棱锥的底面是一个边长是2的正方形,四棱锥的高与圆锥的高相同,高是=,几何体的体积是=,故选D【点评】本题考查由三视图求组合体的体积,考查由三视图还原直观图,本题的三视图比较特殊,不容易看出直观图,需要仔细观察8 【答案】D【解析】解:当2x4时,f(x)=1|x3|当1x2时,22x4,则f(x)=f(2x)=(1|2x3|),此时当x=时,函数取极大值;当2x4时,f(x)=1|x3|;此时当x=3时,函数取极大值1;当4x8时,24,则f(x)=cf()=c(1|3|),此时当x=6时,函数取极大值c函数的所有极大值点均落在同一条直线上,即点(,),(3,1),(6,c)共线,=,解得c=1或2故选D【点评】本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数f(x)的解析式,进而求出三个函数的极值点坐标,是解答本题的关键9 【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证命题“a,bN,如果ab可被5整除,那么a,b至少有1个能被5整除”的否定是“a,b都不能被5整除”故选:B10【答案】D【解析】解:x0,y0, +=1,不等式x+y2m1恒成立,所以(x+y)(+)=10+10=16,当且仅当时等号成立,所以2m116,解得m;故m的取值范围是(;故选D11【答案】C【解析】解:函数y=sin(2x+)的图象向左平移个单位长度得到y=sin(2x+)的图象,当x=0时,y=sin=,不是最值,故函数图象不关于y轴对称,故命题p为假命题;函数y=|2x1|在1,0上是减函数,在0,+)上是增函数故命题q为假命题;则q为真命题;pq为假命题;pq为假命题,故只有C判断错误,故选:C12【答案】B【解析】解:假设过点P且平行于l的直线有两条m与nml且nl由平行公理4得mn这与两条直线m与n相交与点P相矛盾又因为点P在平面内所以点P且平行于l的直线有一条且在平面内所以假设错误故选B【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型二、填空题13【答案】75度 【解析】解:点P可能在二面角l内部,也可能在外部,应区别处理当点P在二面角l的内部时,如图,A、C、B、P四点共面,ACB为二面角的平面角,由题设条件,点P到,和棱l的距离之比为1:2可求ACP=30,BCP=45,ACB=75故答案为:75【点评】本题考查与二面角有关的立体几何综合题,考查分类讨论的数学思想,正确找出二面角的平面角是关键14【答案】20 【解析】解:(1+x)(x2+)6的展开式中,x3的系数是由(x2+)6的展开式中x3与1的积加上x2与x的积组成;又(x2+)6的展开式中,通项公式为 Tr+1=x123r,令123r=3,解得r=3,满足题意;令123r=2,解得r=,不合题意,舍去;所以展开式中x3的系数是=20故答案为:2015【答案】1 【解析】解:f(x)是定义在R上的周期为2的函数,=1故答案为:1【点评】本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”16【答案】5 【解析】解:P(1,4)为抛物线C:y2=mx上一点,即有42=m,即m=16,抛物线的方程为y2=16x,焦点为(4,0),即有|PF|=5故答案为:5【点评】本题考查抛物线的方程和性质,考查两点的距离公式,及运算能力,属于基础题17【答案】【解析】令,则所以为奇函数且单调递增,因此即点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内18【答案】 【解析】解:当k=0时,当x0时,f(x)=1,则f(f(x)=f(1)=0,此时有无穷多个零点,故错误;当k0时,()当x0时,f(x)=kx+11,此时f(f(x)=f(kx+1)=,令f(f(x)=0,可得:x=0;()当0x1时,此时f(f(x)=f()=,令f(f(x)=0,可得:x=,满足;()当x1时,此时f(f(x)=f()=k+10,此时无零点综上可得,当k0时,函数有两零点,故正确;当k0时,()当x时,kx+10,此时f(f(x)=f(kx+1)=k(kx+1)+1,令f(f(x)=0,可得:,满足;()当时,kx+10,此时f(f(x)=f(kx+1)=,令f(f(x)=0,可得:x=0,满足;()当0x1时,此时f(f(x)=f()=,令f(f(x)=0,可得:x=,满足;()当x1时,此时f(f(x)=f()=k+1,令f(f(x)=0得:x=1,满足;综上可得:当k0时,函数有4个零点故错误,正确故答案为:【点评】本题考查复合函数的零点问题考查了分类讨论和转化的思想方法,要求比较高,属于难题三、解答题19【答案】 【解析】(I)证明:平面PAB平面ABCD,ABAD,平面PAB平面ABCD=AB,AD平面PAB又PB平面PAB,ADPB(II)解:由(I)可知,AD平面PAB,又E为PA的中点,当M为PD的中点时,EMAD,EM平面PAB,EM平面BEM,平面BEM平面PAB此时,(III)设CD的中点为F,连接BF,FM由(II)可知,M为PD的中点FMPCABFD,FD=AB,ABFD为平行四边形ADBF,又EMAD,EMBFB,E,M,F四点共面FM平面BEM,又PC平面BEM,PC平面BEM【点评】本题考查了线面垂直的性质,线面平行,面面垂直的判定,属于中档题20【答案】 【解析】解:(1)如图(2)它可以看成一个长方体截去一个小三棱锥,设长方体体积为V1,小三棱锥的体积为V2,则根据图中所给条件得:V1=644=96cm3,V2=222=cm3,V=v1v2=cm3(3)证明:如图,在长方体ABCDABCD中,连接AD,则ADBC因为E,G分别为AA,AD中点,所以ADEG,从而EGBC,又EG平面EFG,所以BC平面EFG;2016年4月26日21【答案】 【解析】(本小题满分12分)解:(1)bsinA=,由正弦定理可得:sinBsinA=sinAcosB,即得tanB=,B=(2)ABC的面积由已知及余弦定理,得又a2+c22ac,故ac4,当且仅当a=c时,等号成立因此ABC面积的最大值为22【答案】 【解析】解:(1)设A=“该运动员两次都命中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论