周村区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
周村区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
周村区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
周村区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
周村区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

周村区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 执行如图所示的程序框图,输出的结果是()A15 B21 C24 D352 若a0,b0,a+b=1,则y=+的最小值是( )A2B3C4D53 函数y=f(x)是函数y=f(x)的导函数,且函数y=f(x)在点p(x0,f(x0)处的切线为l:y=g(x)=f(x0)(xx0)+f(x0),F(x)=f(x)g(x),如果函数y=f(x)在区间a,b上的图象如图所示,且ax0b,那么( )AF(x0)=0,x=x0是F(x)的极大值点BF(x0)=0,x=x0是F(x)的极小值点CF(x0)0,x=x0不是F(x)极值点DF(x0)0,x=x0是F(x)极值点4 定义:数列an前n项的乘积Tn=a1a2an,数列an=29n,则下面的等式中正确的是( )AT1=T19BT3=T17CT5=T12DT8=T115 已知双曲线C 的一个焦点与抛物线y2=8x的焦点相同,且双曲线C过点P(2,0),则双曲线C的渐近线方程是( )Ay=xBy=Cxy=2xDy=x6 若圆心坐标为的圆在直线上截得的弦长为,则这个圆的方程是( )A B C D7 已知P(x,y)为区域内的任意一点,当该区域的面积为4时,z=2xy的最大值是( )A6B0C2D28 由两个1,两个2,两个3组成的6位数的个数为( )A45B90C120D3609 某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为( )1111A B C D10设函数,若对任意,都存在,使得,则实数的最大值为( )A B C. D411若cos()=,则cos(+)的值是( )ABCD12已知随机变量X服从正态分布N(2,2),P(0X4)=0.8,则P(X4)的值等于( )A0.1B0.2C0.4D0.6二、填空题13如图,在长方体ABCDA1B1C1D1中,AB=5,BC=4,AA1=3,沿该长方体对角面ABC1D1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为14已知圆C1:(x2)2+(y3)2=1,圆C2:(x3)2+(y4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值15已知函数,是函数的一个极值点,则实数 16抛物线y2=6x,过点P(4,1)引一条弦,使它恰好被P点平分,则该弦所在的直线方程为17一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件im中的整数m的值是18若正方形P1P2P3P4的边长为1,集合M=x|x=且i,j1,2,3,4,则对于下列命题:当i=1,j=3时,x=2;当i=3,j=1时,x=0;当x=1时,(i,j)有4种不同取值;当x=1时,(i,j)有2种不同取值;M中的元素之和为0其中正确的结论序号为(填上所有正确结论的序号)三、解答题19已知曲线C的极坐标方程为42cos2+92sin2=36,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系;()求曲线C的直角坐标方程;()若P(x,y)是曲线C上的一个动点,求3x+4y的最大值20已知等差数列an满足a2=0,a6+a8=10(1)求数列an的通项公式;(2)求数列的前n项和21已知函数f(x)的定义域为x|xk,kZ,且对定义域内的任意x,y都有f(xy)=成立,且f(1)=1,当0x2时,f(x)0(1)证明:函数f(x)是奇函数;(2)试求f(2),f(3)的值,并求出函数f(x)在2,3上的最值22一块边长为10cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V与x的函数关系式,并求出函数的定义域23已知斜率为1的直线l经过抛物线y2=2px(p0)的焦点F,且与抛物线相交于A,B两点,|AB|=4(I)求p的值;(II)若经过点D(2,1),斜率为k的直线m与抛物线有两个不同的公共点,求k的取值范围24.(1)求函数的单调递减区间;(2)在中,角的对边分别为,若,的面积为,求的最小值. 周村区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】【知识点】算法和程序框图【试题解析】否,否,否,是,则输出S=24故答案为:C2 【答案】C【解析】解:a0,b0,a+b=1,y=+=(a+b)=2+=4,当且仅当a=b=时取等号y=+的最小值是4故选:C【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题3 【答案】 B【解析】解:F(x)=f(x)g(x)=f(x)f(x0)(xx0)f(x0),F(x)=f(x)f(x0)F(x0)=0,又由ax0b,得出当axx0时,f(x)f(x0),F(x)0,当x0xb时,f(x)f(x0),F(x)0,x=x0是F(x)的极小值点故选B【点评】本题主要考查函数的极值与其导函数的关系,即当函数取到极值时导函数一定等于0,反之当导函数等于0时还要判断原函数的单调性才能确定是否有极值4 【答案】C【解析】解:an=29n,Tn=a1a2an=28+7+9n=T1=28,T19=219,故A不正确T3=221,T17=20,故B不正确T5=230,T12=230,故C正确T8=236,T11=233,故D不正确故选C5 【答案】A【解析】解:抛物线y2=8x的焦点(2,0),双曲线C 的一个焦点与抛物线y2=8x的焦点相同,c=2,双曲线C过点P(2,0),可得a=2,所以b=2双曲线C的渐近线方程是y=x故选:A【点评】本题考查双曲线方程的应用,抛物线的简单性质的应用,基本知识的考查6 【答案】B【解析】考点:圆的方程.11117 【答案】A 解析:解:由作出可行域如图,由图可得A(a,a),B(a,a),由,得a=2A(2,2),化目标函数z=2xy为y=2xz,当y=2xz过A点时,z最大,等于22(2)=6故选:A8 【答案】B【解析】解:问题等价于从6个位置中各选出2个位置填上相同的1,2,3,所以由分步计数原理有:C62C42C22=90个不同的六位数,故选:B【点评】本题考查了分步计数原理,关键是转化,属于中档题9 【答案】【解析】试题分析:分段间隔为,故选D.考点:系统抽样10【答案】A111.Com【解析】试题分析:设的值域为,因为函数在上的值域为,所以,因此至少要取遍中的每一个数,又,于是,实数需要满足或,解得考点:函数的性质.【方法点晴】本题主要考查函数的性质用,涉及数形结合思想、函数与方程思想、转和化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型。首先求出,再利用转化思想将命题条件转化为,进而转化为至少要取遍中的每一个数,再利用数形结合思想建立不等式组:或,从而解得11【答案】B【解析】解:cos()=,cos(+)=cos=cos()=故选:B12【答案】A【解析】解:随机变量服从正态分布N(2,o2),正态曲线的对称轴是x=2P(0X4)=0.8,P(X4)=(10.8)=0.1,故选A二、填空题13【答案】114 【解析】解:根据题目要求得出:当53的两个面叠合时,所得新的四棱柱的表面积最大,其表面积为(54+55+34)2=114故答案为:114【点评】本题考查了空间几何体的性质,运算公式,学生的空间想象能力,属于中档题,难度不大,学会分析判断解决问题14【答案】54 【解析】解:如图,圆C1关于x轴的对称圆的圆心坐标A(2,3),半径为1,圆C2的圆心坐标(3,4),半径为3,|PM|+|PN|的最小值为圆A与圆C2的圆心距减去两个圆的半径和,即:4=54故答案为:54【点评】本题考查圆的对称圆的方程的求法,考查两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力,考查数形结合的数学思想,属于中档题15【答案】5【解析】试题分析:考点:导数与极值16【答案】3xy11=0 【解析】解:设过点P(4,1)的直线与抛物线的交点为A(x1,y1),B(x2,y2),即有y12=6x1,y22=6x2,相减可得,(y1y2)(y1+y2)=6(x1x2),即有kAB=3,则直线方程为y1=3(x4),即为3xy11=0将直线y=3x11代入抛物线的方程,可得9x272x+121=0,判别式为722491210,故所求直线为3xy11=0故答案为:3xy11=017【答案】6 【解析】解:第一次循环:S=0+=,i=1+1=2;第二次循环:S=+=,i=2+1=3;第三次循环:S=+=,i=3+1=4;第四次循环:S=+=,i=4+1=5;第五次循环:S=+=,i=5+1=6;输出S,不满足判断框中的条件;判断框中的条件为i6?故答案为:6【点评】本题考查程序框图,尤其考查循环结构对循环体每次循环需要进行分析并找出内在规律本题属于基础题18【答案】 【解析】解:建立直角坐标系如图:则P1(0,1),P2(0,0),P3(1,0),P4(1,1)集合M=x|x=且i,j1,2,3,4,对于,当i=1,j=3时,x=(1,1)(1,1)=1+1=2,故正确;对于,当i=3,j=1时,x=(1,1)(1,1)=2,故错误;对于,集合M=x|x=且i,j1,2,3,4,=(1,1),=(0,1),=(1,0),=1; =1; =1; =1;当x=1时,(i,j)有4种不同取值,故正确;同理可得,当x=1时,(i,j)有4种不同取值,故错误;由以上分析,可知,当x=1时,(i,j)有4种不同取值;当x=1时,(i,j)有4种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=2;当i=2,j=4,或i=4,j=2时,x=0,M中的元素之和为0,故正确综上所述,正确的序号为:,故答案为:【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标系,求得=(1,1),=(0,1),=(1,0)是关键,考查分析、化归与运算求解能力,属于难题三、解答题19【答案】 【解析】解:()由42cos2+92sin2=36得4x2+9y2=36,化为;()设P(3cos,2sin),则3x+4y=,R,当sin(+)=1时,3x+4y的最大值为【点评】本题考查了椭圆的极坐标方程、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题20【答案】 【解析】解:(1)设等差数列an的公差为d,a2=0,a6+a8=10,解得,an1+(n1)=n2(2)=数列的前n项和Sn=1+0+,=+0+,=1+=2+=,Sn=21【答案】 【解析】(1)证明:函数f(x)的定义域为x|xk,kZ,关于原点对称又f(xy)=,所以f(x)=f(1x)1= = = = = =,故函数f(x)奇函数(2)令x=1,y=1,则f(2)=f1(1)= =,令x=1,y=2,则f(3)=f1(2)= = =,f(x2)=,f(x4)=,则函数的周期是4先证明f(x)在2,3上单调递减,先证明当2x3时,f(x)0,设2x3,则0x21,则f(x2)=,即f(x)=0,设2x1x23,则f(x1)0,f(x2)0,f(x2x1)0,则f(x1)f(x2)=,f(x1)f(x2),即函数f(x)在2,3上为减函数,则函数f(x)在2,3上的最大值为f(2)=0,最小值为f(3)=1【点评】本题主要考查了函数奇偶性的判断,以及函数的最值及其几何意义等有关知识,综合性较强,难度较大22【答案】 【解析】解:如图,设所截等腰三角形的底边边长为xcm,在RtEOF中,依题意函数的定义域为x|0x10【点评】本题是一个函数模型的应用,这种题目解题的关键是看清题意,根据实际问题选择合适的函数模型,注意题目中写出解析式以后要标出自变量的取值范围23【答案】 【解析】解:(I)由题意可知,抛物线y2=2px(p0)的焦点坐标为,准线方程为所以,直线l的方程为由消y并整理,得设A(x1,y1),B(x2,y2)则x1+x2=3p,又|AB|=|AF|+|BF|=x1+x2+p=4,所以,3p+p=4,所以p=1(II)由(I)可知,抛物线的方程为y2=2x由题意,直线m的方程为y=kx+(2k1)由方程组(1)可得ky22y+4k2=0(2)当k=0时,由方程(2),得y=1把y=1代入y2=2x,得这时直线m与抛物线只有一个公共点当k0时,方程(2)得判别式为=44k(4k2)由0,即44k(4k2)0,亦即4k22k10解得于是,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论