




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
泉山区高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 直线的倾斜角为( )A B C D2 已知等差数列an的前n项和为Sn,若m1,且am1+am+1am2=0,S2m1=38,则m等于( )A38B20C10D93 已知直线l平面,P,那么过点P且平行于l的直线( )A只有一条,不在平面内B只有一条,在平面内C有两条,不一定都在平面内D有无数条,不一定都在平面内4 若函数y=x2+(2a1)x+1在区间(,2上是减函数,则实数a的取值范围是( )A,+)B(,C,+)D(,5 设a0,b0,若是5a与5b的等比中项,则+的最小值为( )A8B4C1D6 设是等差数列的前项和,若,则( )A1 B2 C3 D47 在中,则等于( )A B C或 D28 执行如图所示的程序框图,若输入的分别为0,1,则输出的()A4 B16 C27 D369 已知i为虚数单位,则复数所对应的点在( )A第一象限B第二象限C第三象限D第四象限10(2014新课标I)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在0,的图象大致为( )ABCD11设集合,则( )A. B. C. D. 【命题意图】本题主要考查集合的概念与运算,属容易题.12有下列四个命题:“若a2+b2=0,则a,b全为0”的逆否命题;“全等三角形的面积相等”的否命题;“若“q1”,则x2+2x+q=0有实根”的逆否命题;“矩形的对角线相等”的逆命题其中真命题为( )ABCD二、填空题13函数的单调递增区间是14为了近似估计的值,用计算机分别产生90个在1,1的均匀随机数x1,x2,x90和y1,y2,y90,在90组数对(xi,yi)(1i90,iN*)中,经统计有25组数对满足,则以此估计的值为15已知f(x)=,则ff(0)=16如图,在长方体ABCDA1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥ABB1D1D的体积为cm317等差数列的前项和为,若,则等于_.18已知tan=,tan()=,其中,均为锐角,则=三、解答题19(本小题满分12分)已知函数,数列满足:,().(1)求数列的通项公式;(2)设数列的前项和为,求数列的前项和.【命题意图】本题主要考查等差数列的概念,通项公式的求法,裂项求和公式,以及运算求解能力.20(本小题满分12分)如图,多面体中,四边形ABCD为菱形,且,.(1)求证:;(2)若,求三棱锥的体积.21【常熟中学2018届高三10月阶段性抽测(一)】已知函数有一个零点为4,且满足.(1)求实数和的值;(2)试问:是否存在这样的定值,使得当变化时,曲线在点处的切线互相平行?若存在,求出的值;若不存在,请说明理由;(3)讨论函数在上的零点个数.22如图,椭圆C: +=1(ab0)的离心率e=,且椭圆C的短轴长为2()求椭圆C的方程;()设P,M,N椭圆C上的三个动点(i)若直线MN过点D(0,),且P点是椭圆C的上顶点,求PMN面积的最大值;(ii)试探究:是否存在PMN是以O为中心的等边三角形,若存在,请给出证明;若不存在,请说明理由23已知函数,()求函数的最大值;()若,求函数的单调递增区间24已知函数f(x)=ex(x2+ax)在点(0,f(0)处的切线斜率为2()求实数a的值;()设g(x)=x(xt)(tR),若g(x)f(x)对x0,1恒成立,求t的取值范围;()已知数列an满足a1=1,an+1=(1+)an,求证:当n2,nN时 f()+f()+L+f()n()(e为自然对数的底数,e2.71828) 泉山区高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】试题分析:由直线,可得直线的斜率为,即,故选C.1考点:直线的斜率与倾斜角.2 【答案】C【解析】解:根据等差数列的性质可得:am1+am+1=2am,则am1+am+1am2=am(2am)=0,解得:am=0或am=2,若am等于0,显然S2m1=(2m1)am=38不成立,故有am=2,S2m1=(2m1)am=4m2=38,解得m=10故选C3 【答案】B【解析】解:假设过点P且平行于l的直线有两条m与nml且nl由平行公理4得mn这与两条直线m与n相交与点P相矛盾又因为点P在平面内所以点P且平行于l的直线有一条且在平面内所以假设错误故选B【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型4 【答案】B【解析】解:函数y=x2+(2a1)x+1的图象是方向朝上,以直线x=为对称轴的抛物线又函数在区间(,2上是减函数,故2解得a故选B5 【答案】B【解析】解:是5a与5b的等比中项,5a5b=()2=5,即5a+b=5,则a+b=1,则+=(+)(a+b)=1+1+2+2=2+2=4,当且仅当=,即a=b=时,取等号,即+的最小值为4,故选:B【点评】本题主要考查等比数列性质的应用,以及利用基本不等式求最值问题,注意1的代换6 【答案】A【解析】1111试题分析:故选A111考点:等差数列的前项和7 【答案】C【解析】考点:余弦定理8 【答案】D【解析】【知识点】算法和程序框图【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是,则输出的36。故答案为:D9 【答案】A【解析】解: =1+i,其对应的点为(1,1),故选:A10【答案】 C【解析】解:在直角三角形OMP中,OP=1,POM=x,则OM=|cosx|,点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选C【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用11【答案】B【解析】易知,所以,故选B.12【答案】B【解析】解:由于“若a2+b2=0,则a,b全为0”是真命题,因此其逆否命题是真命题;“全等三角形的面积相等”的否命题为“不全等的三角形的面积不相等”,不正确;若x2+2x+q=0有实根,则=44q0,解得q1,因此“若“q1”,则x2+2x+q=0有实根”的逆否命题是真命题;“矩形的对角线相等”的逆命题为“对角线相等的四边形是矩形”,是假命题综上可得:真命题为:故选:B【点评】本题考查了命题之间的关系及其真假判定方法,考查了推理能力,属于基础题二、填空题13【答案】2,3) 【解析】解:令t=3+4xx20,求得1x3,则y=,本题即求函数t在(1,3)上的减区间利用二次函数的性质可得函数t在(1,3)上的减区间为2,3),故答案为:2,3)14【答案】 【解析】设A(1,1),B(1,1),则直线AB过原点,且阴影面积等于直线AB与圆弧所围成的弓形面积S1,由图知,又,所以【点评】本题考查了随机数的应用及弓形面积公式,属于中档题15【答案】1 【解析】解:f(0)=01=1,ff(0)=f(1)=21=1,故答案为:1【点评】本题考查了分段函数的简单应用16【答案】6 【解析】解:过A作AOBD于O,AO是棱锥的高,所以AO=,所以四棱锥ABB1D1D的体积为V=6故答案为:617【答案】【解析】试题分析:由题意得,根据等差数列的性质,可得,由等差数列的求和考点:等差数列的性质和等差数列的和18【答案】 【解析】解:tan=,均为锐角,tan()=,解得:tan=1,=故答案为:【点评】本题考查了两角差的正切公式,掌握公式是关键,属于基础题三、解答题19【答案】【解析】(1),. 即,所以数列是以首项为2,公差为2的等差数列, . (5分)(2)数列是等差数列,. (8分). (12分)20【答案】【解析】【命题意图】本小题主要考查空间直线与直线、直线与平面的位置关系及几何体的体积等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想等(2)在中,21【答案】(1);(2)答案见解析;(3)当或时,在有两个零点;当时,在有一个零点.【解析】试题分析:(1)由题意得到关于实数b,c的方程组,求解方程组可得; (3)函数的导函数,结合导函数的性质可得当或时,在有两个零点;当时,在有一个零点.试题解析:(1)由题意,解得;(2)由(1)可知,;假设存在满足题意,则是一个与无关的定值,即是一个与无关的定值,则,即,平行直线的斜率为;(3),其中,设两根为和,考察在上的单调性,如下表1当时,而,在和上各有一个零点,即在有两个零点;2当时,而,仅在上有一个零点,即在有一个零点;3当时,且,当时,则在和上各有一个零点,即在有两个零点;当时,则仅在上有一个零点,即在有一个零点;综上:当或时,在有两个零点;当时,在有一个零点.点睛:在解决类似的问题时,首先要注意区分函数最值与极值的区别求解函数的最值时,要先求函数yf(x)在a,b内所有使f(x)0的点,再计算函数yf(x)在区间内所有使f(x)0的点和区间端点处的函数值,最后比较即得22【答案】 【解析】解:()由题意得解得a=2,b=1,所以椭圆方程为()(i)由已知,直线MN的斜率存在,设直线MN方程为y=kx,M(x1,y1),N(x2,y2)由得(1+4k2)x24kx3=0,x1+x2=,x1x2=,又 所以SPMN=|PD|x1x2|= 令t=,则t,k2=所以SPMN=,令h(t)=,t,+),则h(t)=1=0,所以h(t)在,+),单调递增,则t=,即k=0时,h(t)的最小值,为h()=,所以PMN面积的最大值为 (ii)假设存在PMN是以O为中心的等边三角形(1)当P在y轴上时,P的坐标为(0,1),则M,N关于y轴对称,MN的中点Q在y轴上又O为PMN的中心,所以,可知Q(0,),M(,),N(,)从而|MN|=,|PM|=,|MN|PM|,与PMN为等边三角形矛盾(2)当P在x轴上时,同理可知,|MN|PM|,与PMN为等边三角形矛盾 (3)当P不在坐标轴时,设P(x0,y0),MN的中点为Q,则kOP=,又O为PMN的中心,则,可知设M(x1,y1),N(x2,y2),则x1+x2=2xQ=x0,y1+y2=2yQ=y0,又x12+4y12=4,x22+4y22=4,两式相减得kMN=,从而kMN= 所以kOPkMN=()=1,所以OP与MN不垂直,与等边PMN矛盾 综上所述,不存在PMN是以O为中心的等边三角形【点评】本小题考查点到直线的距离公式、椭圆的性质、直线与椭圆的位置关系等基础知识,考查运算求解能力、推理论证能力、分析解决问题能力,考查函数与方程思想、数形结合思想、特殊与一般思想、化归与转化思想23【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合【试题解析】()由已知当,即, 时,()当时,递增即,令,且注意到函数的递增区间为24【答案】 【解析】解:()f(x)=ex(x2+ax),f(x)=ex(x2+ax)+ex(2x+a)=ex(x2+ax2xa);则由题意得f(0)=(a)=2,故a=2()由()知,f(x)=ex(x2+2x),由g(x)f(x)得,x(xt)ex(x2+2x),x0,1;当x=0时,该不等式成立;当x(0,1时,不等式x+t+ex(x+2)在(0,1上恒成立,即tex(x+2)+xmax设h(x)=ex(x+2)+x,x(0,1,h(x)=ex(x+1)+1,h(x)=xex0,h(x)在(0,1单调递增,h(x)h(0)=0,h(x)在(0,1单调递增,h(x)max=h(1)=1,t1()证明:an+1=(1+)an,=,又a1=1,n2时,an=a1=1=n;对n=1也成立,an=n当x(0,1时,f(x)=ex(x22)0,f(x)在0,1上单调
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025注册验船师资格考试(C级船舶检验专业案例分析)综合能力测试题及答案二
- 2025年篮球线上考试题及答案
- 航空公务员面试题及答案
- 2025年注册验船师资格考试(A级船舶检验专业法律法规)模拟题及答案一
- 国企银行面试题及答案
- 2025年网络工程师认证考试模拟题及详解
- 广西公务员面试题及答案
- 2025年游戏开发专家面试秘籍与模拟题回顾
- 2025年心理咨询师高级职位竞聘面试指南及模拟题解析
- 2025年药品安全员资格认证考试重点题
- 带式输送机试运行方案方案
- 2025年超细铜粉市场规模分析
- 构建专家委员会的初步方案
- DB37-T 5317-2025《旋挖成孔灌注桩施工技术规程》
- 个性化医疗决策模型-深度研究
- Oracle财务系统应付账款模块操作手册
- 体检营销话术与技巧培训
- 广东省佛山市顺德区2023-2024学年七年级(上)期末数学试卷(含答案)
- 变配电运维职业技能(中级)等级培训题库
- 矿山隐蔽致灾普查治理报告
- 实心球课件教学课件
评论
0/150
提交评论