章贡区一中2018-2019学年上学期高二数学12月月考试题含解析_第1页
章贡区一中2018-2019学年上学期高二数学12月月考试题含解析_第2页
章贡区一中2018-2019学年上学期高二数学12月月考试题含解析_第3页
章贡区一中2018-2019学年上学期高二数学12月月考试题含解析_第4页
章贡区一中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

章贡区一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 用一平面去截球所得截面的面积为2,已知球心到该截面的距离为1,则该球的体积是( )AB2C4D 2 若函数则函数的零点个数为( )A1 B2 C3 D43 抛物线y=4x2的焦点坐标是( )A(0,1)B(1,0)CD4 不等式x(x1)2的解集是( )Ax|2x1Bx|1x2Cx|x1或x2Dx|x2或x15 过点(0,2)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是( )ABCD6 已知函数,函数,其中bR,若函数y=f(x)g(x)恰有4个零点,则b的取值范围是( )ABCD7 在中,角,的对边分别是,为边上的高,若,则到边的距离为( )A2 B3 C.1 D48 已知集合A=0,1,2,则集合B=xy|xA,yA中元素的个数是( )A1B3C5D99 已知数列满足().若数列的最大项和最小项分别为和,则( )A B C D10在ABC中,内角A,B,C所对的边分别为a,b,c,若sinB=2sinC,a2c2=3bc,则A等于( )A30B60C120D15011已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( )ABCD =0.08x+1.2312一个多面体的直观图和三视图如图所示,点是边上的动点,记四面体的体积为,多面体的体积为,则( )1111A B C D不是定值,随点的变化而变化二、填空题13若函数y=ln(2x)为奇函数,则a=14执行如图所示的程序框图,输出的所有值之和是 .【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.15某校开设9门课程供学生选修,其中A,B,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有种16无论m为何值时,直线(2m+1)x+(m+1)y7m4=0恒过定点17设满足条件,若有最小值,则的取值范围为 18在极坐标系中,O是极点,设点A,B的极坐标分别是(2,),(3,),则O点到直线AB的距离是三、解答题19已知函数f(x)=()求函数f(x)单调递增区间;()在ABC中,角A,B,C的对边分别是a,b,c,且满足(2ac)cosB=bcosC,求f(A)的取值范围20ABC中,角A,B,C所对的边之长依次为a,b,c,且cosA=,5(a2+b2c2)=3ab()求cos2C和角B的值;()若ac=1,求ABC的面积21(本小题满分12分)已知椭圆:的左、右焦点分别为,过点作垂直于轴的直线,直线垂直于点,线段的垂直平分线交于点.(1)求点的轨迹的方程;(2)过点作两条互相垂直的直线,且分别交椭圆于,求四边形面积的最小值.22在数列中,其中,()当时,求的值;()是否存在实数,使构成公差不为0的等差数列?证明你的结论;()当时,证明:存在,使得23甲、乙两位同学参加数学竞赛培训,在培训期间他们参加5次预赛,成绩如下:甲:78 76 74 90 82乙:90 70 75 85 80()用茎叶图表示这两组数据;()现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适?说明理由24 定圆动圆过点且与圆相切,记圆心的轨迹为()求轨迹的方程;()设点在上运动,与关于原点对称,且,当的面积最小时,求直线的方程.章贡区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:用一平面去截球所得截面的面积为2,所以小圆的半径为: cm;已知球心到该截面的距离为1,所以球的半径为:,所以球的体积为: =4故选:C2 【答案】D【解析】 考点:函数的零点【易错点睛】函数零点个数的判断方法:(1)直接求零点:令,如果能求出解,则有几个解就有几个零点(2)零点存在性定理法:要求函数在上是连续的曲线,且.还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点. 3 【答案】C【解析】解:抛物线y=4x2的标准方程为 x2=y,p=,开口向上,焦点在y轴的正半轴上,故焦点坐标为(0,),故选C【点评】本题考查抛物线的标准方程,以及简单性质的应用;把抛物线y=4x2的方程化为标准形式,是解题的关键4 【答案】B【解析】解:x(x1)2,x2x20,即(x2)(x+1)0,1x2,即不等式的解集为x|1x2故选:B5 【答案】A【解析】解:若直线斜率不存在,此时x=0与圆有交点,直线斜率存在,设为k,则过P的直线方程为y=kx2,即kxy2=0,若过点(0,2)的直线l与圆x2+y2=1有公共点,则圆心到直线的距离d1,即1,即k230,解得k或k,即且,综上所述,故选:A6 【答案】 D【解析】解:g(x)=f(2x),y=f(x)g(x)=f(x)+f(2x),由f(x)+f(2x)=0,得f(x)+f(2x)=,设h(x)=f(x)+f(2x),若x0,则x0,2x2,则h(x)=f(x)+f(2x)=2+x+x2,若0x2,则2x0,02x2,则h(x)=f(x)+f(2x)=2x+2|2x|=2x+22+x=2,若x2,x2,2x0,则h(x)=f(x)+f(2x)=(x2)2+2|2x|=x25x+8作出函数h(x)的图象如图:当x0时,h(x)=2+x+x2=(x+)2+,当x2时,h(x)=x25x+8=(x)2+,故当=时,h(x)=,有两个交点,当=2时,h(x)=,有无数个交点,由图象知要使函数y=f(x)g(x)恰有4个零点,即h(x)=恰有4个根,则满足2,解得:b(,4),故选:D【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键7 【答案】D【解析】考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差,这是一个易错点,两个向量的和(点是的中点),另外,要选好基底向量,如本题就要灵活使用向量,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几何意义等.8 【答案】C【解析】解:A=0,1,2,B=xy|xA,yA,当x=0,y分别取0,1,2时,xy的值分别为0,1,2;当x=1,y分别取0,1,2时,xy的值分别为1,0,1;当x=2,y分别取0,1,2时,xy的值分别为2,1,0;B=2,1,0,1,2,集合B=xy|xA,yA中元素的个数是5个故选C9 【答案】D【解析】试题分析:数列,当时,,即;当时,即.因此数列先增后减,为最大项,,最小项为,的值为故选D.考点:数列的函数特性.10【答案】C【解析】解:由sinB=2sinC,由正弦定理可知:b=2c,代入a2c2=3bc,可得a2=7c2,所以cosA=,0A180,A=120故选:C【点评】本题考查正弦定理以及余弦定理在解三角形中的应用,考查了转化思想,属于基本知识的考查11【答案】C【解析】解:法一:由回归直线的斜率的估计值为1.23,可排除D由线性回归直线方程样本点的中心为(4,5),将x=4分别代入A、B、C,其值依次为8.92、9.92、5,排除A、B法二:因为回归直线方程一定过样本中心点,将样本点的中心(4,5)分别代入各个选项,只有C满足,故选C【点评】本题提供的两种方法,其实原理都是一样的,都是运用了样本中心点的坐标满足回归直线方程12【答案】B【解析】考点:棱柱、棱锥、棱台的体积二、填空题13【答案】4 【解析】解:函数y=ln(2x)为奇函数,可得f(x)=f(x),ln(+2x)=ln(2x)ln(+2x)=ln()=ln()可得1+ax24x2=1,解得a=4故答案为:414【答案】54【解析】根据程序框图可知循环体共运行了9次,输出的是1,3,5,7,9,11,13,15, 17中不是3的倍数的数,所以所有输出值的和.15【答案】75 【解析】计数原理的应用【专题】应用题;排列组合【分析】由题意分两类,可以从A、B、C三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果【解答】解:由题意知本题需要分类来解,第一类,若从A、B、C三门选一门,再从其它6门选3门,有C31C63=60,第二类,若从其他六门中选4门有C64=15,根据分类计数加法得到共有60+15=75种不同的方法故答案为:75【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏16【答案】(3,1) 【解析】解:由(2m+1)x+(m+1)y7m4=0,得即(2x+y7)m+(x+y4)=0,2x+y7=0,且x+y4=0,一次函数(2m+1)x+(m+1)y7m4=0的图象就和m无关,恒过一定点 由,解得解之得:x=3 y=1 所以过定点(3,1);故答案为:(3,1)17【答案】【解析】解析:不等式表示的平面区域如图所示,由得,当时,平移直线可知,既没有最大值,也没有最小值;当时,平移直线可知,在点A处取得最小值;当时,平移直线可知,既没有最大值,也没有最小值;当时,平移直线可知,在点A处取得最大值,综上所述,18【答案】 【解析】解:根据点A,B的极坐标分别是(2,),(3,),可得A、B的直角坐标分别是(3,)、(,),故AB的斜率为,故直线AB的方程为 y=(x3),即x+3y12=0,所以O点到直线AB的距离是=,故答案为:【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题三、解答题19【答案】 【解析】解:()f(x)=sincos+cos2=sin(+),由2k+2k,kZ可解得:4kx4k,kZ,函数f(x)单调递增区间是:4k,4k,kZ()f(A)=sin(+),由条件及正弦定理得sinBcosC=(2sinAsinC)cosB=2sinAcosBsinCcosB,则sinBcosC+sinCcosB=2sinAcosB,sin(B+C)=2sinAcosB,又sin(B+C)=sinA0,cosB=,又0B,B=可得0A,+,sin(+)1,故函数f(A)的取值范围是(1,)【点评】本题考查三角函数性质及简单的三角变换,要求学生能正确运用三角函数的概念和公式对已知的三角函数进行化简求值,属于中档题20【答案】 【解析】解:(I)由cosA=,0A,sinA=,5(a2+b2c2)=3ab,cosC=,0C,sinC=,cos2C=2cos2C1=,cosB=cos(A+C)=cosAcosC+sinAsinC=+=0B,B=(II)=,a=c,ac=1,a=,c=1,S=acsinB=1=【点评】本题主要考查了正弦定理和余弦定理的综合运用,两角和与差的正弦公式等知识考查学生对基础知识的综合运用21【答案】(1);(2).【解析】试题分析:(1)求得椭圆的焦点坐标,连接,由垂直平分线的性质可得,运用抛物线的定义,即可得到所求轨迹方程;(2)分类讨论:当或中的一条与轴垂直而另一条与轴重合时,此时四边形面积当直线和的斜率都存在时,不妨设直线的方程为,则直线的方程为分别与椭圆的方程联立得到根与系数的关系,利用弦长公式可得,利用四边形面积即可得到关于斜率的式子,再利用配方和二次函数的最值求法,即可得出(2)当直线的斜率存在且不为零时,直线的斜率为,则直线的斜率为,直线的方程为,联立,得.111,.由于直线的斜率为,用代换上式中的。可得.,四边形的面积.由于,当且仅当,即时取得等号.易知,当直线的斜率不存在或斜率为零时,四边形的面积.综上,四边形面积的最小值为.考点:椭圆的简单性质1【思路点晴】求得椭圆的焦点坐标,由垂直平分线的性质可得,运用抛物线的定义,即可得所求的轨迹方程.第二问分类讨论,当或中的一条与轴垂直而另一条与轴重合时,四边形面积为.当直线和的斜率都存在时,分别设出的直线方程与椭圆联立得到根与系数的关系,利用弦长公式求得,从而利用四边形的面积公式求最值.22【答案】【解析】【知识点】数列综合应用【试题解析】(),()成等差数列,即,即,将,代入上式, 解得经检验,此时的公差不为0存在,使构成公差不为0的等差数列(),又,令由,将上述不等式相加,得,即取正整数,就有23【答案】 【解析】解:()用茎叶图表示如下:()

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论