旬邑县高中2018-2019学年上学期高二数学12月月考试题含解析_第1页
旬邑县高中2018-2019学年上学期高二数学12月月考试题含解析_第2页
旬邑县高中2018-2019学年上学期高二数学12月月考试题含解析_第3页
旬邑县高中2018-2019学年上学期高二数学12月月考试题含解析_第4页
旬邑县高中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

旬邑县高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 集合的真子集共有( )A个 B个 C个 D个2 函数y=ax+1(a0且a1)图象恒过定点( )A(0,1)B(2,1)C(2,0)D(0,2)3 已知i是虚数单位,则复数等于( )A +iB +iCiDi4 Sn是等差数列an的前n项和,若3a82a74,则下列结论正确的是( )AS1872 BS1976CS2080 DS21845 已知x,y满足约束条件,使z=ax+y取得最小值的最优解有无数个,则a的值为( )A3B3C1D16 函数y=f(x)在1,3上单调递减,且函数f(x+3)是偶函数,则下列结论成立的是( )Af(2)f()f(5)Bf()f(2)f(5)Cf(2)f(5)f()Df(5)f()f(2)7 设集合,集合,若 ,则的取值范围( )A B C. D8 若函数f(x)的定义域为R,则“函数f(x)是奇函数”是“f(0)=0”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件9 设k=1,2,3,4,5,则(x+2)5的展开式中xk的系数不可能是( )A10B40C50D8010已知函数与轴的交点为,且图像上两对称轴之间的最小距离为,则使成立的的最小值为( )1111A B C D11如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m,n为数字09中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a和b,则一定有( )AabBabCa=bDa,b的大小与m,n的值有关12设l,m,n表示不同的直线,表示不同的平面,给出下列四个命题:若ml,m,则l;若ml,m,则l;若=l,=m,=n,则lmn;若=l,=m,=n,n,则lm其中正确命题的个数是( )A1B2C3D4二、填空题13椭圆的两焦点为F1,F2,一直线过F1交椭圆于P、Q,则PQF2的周长为14三角形中,则三角形的面积为 .15设向量a(1,1),b(0,t),若(2ab)a2,则t_16函数在点处的切线的斜率是 .17已知f(x),g(x)都是定义在R上的函数,g(x)0,f(x)g(x)f(x)g(x),且f(x)=axg(x)(a0且a1),+=若数列的前n项和大于62,则n的最小值为18若log2(2m3)=0,则elnm1=三、解答题19设an是公比小于4的等比数列,Sn为数列an的前n项和已知a1=1,且a1+3,3a2,a3+4构成等差数列(1)求数列an的通项公式;(2)令bn=lna3n+1,n=12求数列bn的前n项和Tn20已知函数f(x)=lg(x25x+6)和的定义域分别是集合A、B,(1)求集合A,B;(2)求集合AB,AB 21在平面直角坐标系中,以坐标原点为极点,x轴非负半轴为极轴建立极坐标系已知直线l过点P(1,0),斜率为,曲线C:=cos2+8cos()写出直线l的一个参数方程及曲线C的直角坐标方程;()若直线l与曲线C交于A,B两点,求|PA|PB|的值 22(本小题满分12分)如图所示,已知平面,平面,为等边三角形,,为的中点.(1)求证:平面;(2)平面平面.23.已知定义域为R的函数f(x)=是奇函数(1)求a的值;(2)判断f(x)在(,+)上的单调性(直接写出答案,不用证明);(3)若对于任意tR,不等式f(t22t)+f(2t2k)0恒成立,求k的取值范围24(本小题满分10分)选修4-4:坐标系与参数方程:在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系已知直线的极坐标方程为,曲线的极坐标方程为(1)设为参数,若,求直线的参数方程;(2)已知直线与曲线交于,设,且,求实数的值旬邑县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】考点:真子集的概念.2 【答案】D【解析】解:令x=0,则函数f(0)=a0+3=1+1=2函数f(x)=ax+1的图象必过定点(0,2)故选:D【点评】本题考查了指数函数的性质和a0=1(a0且a1),属于基础题3 【答案】A【解析】解:复数=,故选:A【点评】本题考查了复数的运算法则,属于基础题4 【答案】【解析】选B.3a82a74,3(a17d)2(a16d)4,即a19d4,S1818a118(a1d)不恒为常数S1919a119(a19d)76,同理S20,S21均不恒为常数,故选B.5 【答案】D【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由z=ax+y,得y=ax+z,若a=0,此时y=z,此时函数y=z只在B处取得最小值,不满足条件若a0,则目标函数的斜率k=a0平移直线y=ax+z,由图象可知当直线y=ax+z和直线x+y=1平行时,此时目标函数取得最小值时最优解有无数多个,此时a=1,即a=1若a0,则目标函数的斜率k=a0平移直线y=ax+z,由图象可知当直线y=ax+z,此时目标函数只在C处取得最小值,不满足条件综上a=1故选:D【点评】本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用z的几何意义是解决本题的关键注意要对a进行分类讨论6 【答案】B【解析】解:函数y=f(x)在1,3上单调递减,且函数f(x+3)是偶函数,f()=f(6),f(5)=f(1),f(6)f(2)f(1),f()f(2)f(5)故选:B【点评】本题考查的知识点是抽象函数的应用,函数的单调性和函数的奇偶性,是函数图象和性质的综合应用,难度中档7 【答案】A【解析】考点:集合的包含关系的判断与应用.【方法点晴】本题主要考查了集合的包含关系的判定与应用,其中解答中涉及到分式不等式的求解,一元二次不等式的解法,集合的子集的相关的运算等知识点的综合考查,着重考查了转化与化归思想、分类讨论思想的应用,以及学生的推理与运算能力,属于中档试题,本题的解答中正确求解每个不等式的解集是解答的关键.8 【答案】A【解析】解:由奇函数的定义可知:若f(x)为奇函数,则任意x都有f(x)=f(x),取x=0,可得f(0)=0;而仅由f(0)=0不能推得f(x)为奇函数,比如f(x)=x2,显然满足f(0)=0,但f(x)为偶函数由充要条件的定义可得:“函数f(x)是奇函数”是“f(0)=0”的充分不必要条件故选:A9 【答案】 C【解析】二项式定理【专题】计算题【分析】利用二项展开式的通项公式求出展开式的xk的系数,将k的值代入求出各种情况的系数【解答】解:(x+2)5的展开式中xk的系数为C5k25k当k1时,C5k25k=C5124=80,当k=2时,C5k25k=C5223=80,当k=3时,C5k25k=C5322=40,当k=4时,C5k25k=C542=10,当k=5时,C5k25k=C55=1,故展开式中xk的系数不可能是50故选项为C【点评】本题考查利用二项展开式的通项公式求特定项的系数10【答案】A【解析】考点:三角函数的图象性质11【答案】C【解析】解:根据茎叶图中的数据,得;甲得分的众数为a=85,乙得分的中位数是b=85;所以a=b故选:C12【答案】 B【解析】解:若ml,m,则由直线与平面垂直的判定定理,得l,故正确;若ml,m,则l或l,故错误;如图,在正方体ABCDA1B1C1D1中,平面ABB1A1平面ABCD=AB,平面ABB1A1平面BCC1B1=BB1,平面ABCD平面BCC1B1=BC,由AB、BC、BB1两两相交,得:若=l,=m,=n,则lmn不成立,故是假命题;若=l,=m,=n,n,则由=n知,n且n,由n及n,=m,得nm,同理nl,故ml,故命题正确故选:B【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养二、填空题13【答案】20 【解析】解:a=5,由椭圆第一定义可知PQF2的周长=4aPQF2的周长=20,故答案为20【点评】作出草图,结合图形求解事半功倍14【答案】【解析】试题分析:因为中,由正弦定理得,又,即,所以,考点:正弦定理,三角形的面积【名师点睛】本题主要考查正弦定理的应用,三角形的面积公式在解三角形有关问题时,正弦定理、余弦定理是两个主要依据,一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦交叉出现时,往往运用正弦定理将边化为正弦,再结合和、差、倍角的正弦公式进行解答解三角形时三角形面积公式往往根据不同情况选用不同形式,等等15【答案】【解析】(2ab)a(2,2t)(1,1)21(2t)(1)4t2,t2.答案:216【答案】【解析】试题分析:,则,故答案为. 考点:利用导数求曲线上某点切线斜率.17【答案】1 【解析】解:x为实数,x表示不超过x的最大整数,如图,当x0,1)时,画出函数f(x)=xx的图象,再左右扩展知f(x)为周期函数结合图象得到函数f(x)=xx的最小正周期是1故答案为:1【点评】本题考查函数的最小正周期的求法,是基础题,解题时要认真审题,注意数形结合思想的合理运用18【答案】 【解析】解:log2(2m3)=0,2m3=1,解得m=2,elnm1=eln2e=故答案为:【点评】本题考查指数式化简求值,是基础题,解题时要注意对数方程的合理运用三、解答题19【答案】 【解析】解:(1)设等比数列an的公比为q4,a1+3,3a2,a3+4构成等差数列23a2=a1+3+a3+4,6q=1+7+q2,解得q=2(2)由(1)可得:an=2n1bn=lna3n+1=ln23n=3nln2数列bn的前n项和Tn=3ln2(1+2+n)=ln220【答案】【解析】解:(1)由x25x+60,即(x2)(x3)0,解得:x3或x2,即A=x|x3或x2,由g(x)=,得到10,当x0时,整理得:4x0,即x4;当x0时,整理得:4x0,无解,综上,不等式的解集为0x4,即B=x|0x4;(2)A=x|x3或x2,B=x|0x4,AB=R,AB=x|0x2或3x4【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键21【答案】 【解析】解:()直线l过点P(1,0),斜率为,直线l的一个参数方程为(t为参数);=cos2+8cos,(1cos2)=8cos,即得(sin)2=4cos,y2=4x,曲线C的直角坐标方程为y2=4x() 把代入y2=4x整理得:3t28t16=0,设点A,B对应的参数分别为t1,t2,则,【点评】本题考查了直线参数方程及其应用、极坐标方程化为直角坐标方程,考查了推理能力与计算能力,属于中档题 22【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)推导出,,从而平面,连接,则三点共线,推导出,由线面垂直的判定定理得平面;(2)连接交于点,推导出,则是二面角的平面角由此能求出二面角的余弦值试题解析:(1)如图,取的中点,连接. 为的中点,且.平面,平面, , .又,. 四边形为平行四边形,则. (4分)平面,平面, 平面 (6分)考点:直线与平面平行和垂直的判定23【答案】 【解析】解:(1)因为f(x)为R上的奇函数所以f(0)=0即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论