西山区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
西山区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
西山区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
西山区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
西山区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

西山区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 抛物线y=8x2的准线方程是( )Ay=By=2Cx=Dy=22 命题“xR,使得x21”的否定是( )AxR,都有x21 BxR,使得x21CxR,使得x21DxR,都有x1或x13 已知函数满足,且,分别是上的偶函数和奇函数,若使得不等式恒成立,则实数的取值范围是( )A B C D4 设偶函数f(x)在(0,+)上为减函数,且f(2)=0,则不等式0的解集为( )A(2,0)(2,+)B(,2)(0,2)C(,2)(2,+)D(2,0)(0,2)5 设集合,则( )ABCD6 学校将5个参加知识竞赛的名额全部分配给高一年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配或分配多个名额,则不同的分配方案共有( )A20种B24种C26种D30种7 如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该几何体的表面积为( )A54B162C54+18D162+188 已知,其中i为虚数单位,则a+b=( )A1B1C2D39 某个几何体的三视图如图所示,该几何体的表面积为9214,则该几何体的体积为( )A8020B4020C6010D801010已知集合,则( )A B C D【命题意图】本题考查集合的交集运算,意在考查计算能力11已知某运动物体的位移随时间变化的函数关系为,设物体第n秒内的位移为an,则数列an是( )A公差为a的等差数列B公差为a的等差数列C公比为a的等比数列D公比为的等比数列12数列中,对所有的,都有,则等于( )A B C D二、填空题13已知随机变量N(2,2),若P(4)=0.4,则P(0)=14已知点F是抛物线y2=4x的焦点,M,N是该抛物线上两点,|MF|+|NF|=6,M,N,F三点不共线,则MNF的重心到准线距离为15已知,不等式恒成立,则的取值范围为_.16【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数,其中为自然对数的底数,则不等式的解集为_17若非零向量,满足|+|=|,则与所成角的大小为18在ABC中,若a=9,b=10,c=12,则ABC的形状是 三、解答题19【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数,其中(1)当时,求函数在上的值域;(2)若函数在上的最小值为3,求实数的取值范围.20(本小题满分13分)在四棱锥中,底面是梯形,为的中点()在棱上确定一点,使得平面;()若,求三棱锥的体积21已知函数,且()求的解析式;()若对于任意,都有,求的最小值;()证明:函数的图象在直线的下方22现有5名男生和3名女生(1)若3名女生必须相邻排在一起,则这8人站成一排,共有多少种不同的排法?(2)若从中选5人,且要求女生只有2名,站成一排,共有多少种不同的排法?23等差数列an 中,a1=1,前n项和Sn满足条件,()求数列an 的通项公式和Sn;()记bn=an2n1,求数列bn的前n项和Tn24设F是抛物线G:x2=4y的焦点(1)过点P(0,4)作抛物线G的切线,求切线方程;(2)设A,B为抛物线上异于原点的两点,且满足FAFB,延长AF,BF分别交抛物线G于点C,D,求四边形ABCD面积的最小值西山区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】A【解析】解:整理抛物线方程得x2=y,p=抛物线方程开口向下,准线方程是y=,故选:A【点评】本题主要考查抛物线的基本性质解决抛物线的题目时,一定要先判断焦点所在位置2 【答案】D【解析】解:命题是特称命题,则命题的否定是xR,都有x1或x1,故选:D【点评】本题主要考查含有量词的命题的否定,比较基础3 【答案】B【解析】试题分析:因为函数满足,且分别是上的偶函数和奇函数, 使得不等式恒成立, 即恒成立, , 设,则函数在上单调递增, 此时不等式,当且仅当,即时, 取等号,故选B. 考点:1、函数奇偶性的性质;2、不等式恒成立问题及函数的最值.【方法点晴】本题主要考查函数奇偶性的性质、不等式恒成立问题及函数的最值,属于难题不等式恒成立问题常见方法:分离参数恒成立(即可)或恒成立(即可);数形结合;讨论最值或恒成立;讨论参数 .本题是利用方法求得的最大值的. 4 【答案】B【解析】解:f(x)是偶函数f(x)=f(x)不等式,即也就是xf(x)0当x0时,有f(x)0f(x)在(0,+)上为减函数,且f(2)=0f(x)0即f(x)f(2),得0x2;当x0时,有f(x)0x0,f(x)=f(x)f(2),x2x2综上所述,原不等式的解集为:(,2)(0,2)故选B5 【答案】C【解析】送分题,直接考察补集的概念,故选C。6 【答案】A【解析】解:甲班级分配2个名额,其它班级可以不分配名额或分配多个名额,有1+6+3=10种不同的分配方案;甲班级分配3个名额,其它班级可以不分配名额或分配多个名额,有3+3=6种不同的分配方案;甲班级分配4个名额,其它班级可以不分配名额或分配多个名额,有3种不同的分配方案;甲班级分配5个名额,有1种不同的分配方案故共有10+6+3+1=20种不同的分配方案,故选:A【点评】本题考查分类计数原理,注意分类时做到不重不漏,是一个中档题,解题时容易出错,本题应用分类讨论思想7 【答案】D【解析】解:由已知中的三视图可得:该几何体是一个正方体截去一个三棱锥得到的组合体,其表面有三个边长为6的正方形,三个直角边长为6的等腰直角三角形,和一个边长为6的等边三角形组成,故表面积S=366+366+=162+18,故选:D8 【答案】B【解析】解:由得a+2i=bi1,所以由复数相等的意义知a=1,b=2,所以a+b=1另解:由得ai+2=b+i(a,bR),则a=1,b=2,a+b=1故选B【点评】本题考查复数相等的意义、复数的基本运算,是基础题9 【答案】【解析】解析:选D.该几何体是在一个长方体的上面放置了半个圆柱依题意得(2r2rr2)252r252rr59214, 即(8)r2(305)r(9214)0,即(r2)(8)r4670,r2,该几何体的体积为(4422)58010.10【答案】C【解析】当时,所以,故选C11【答案】A【解析】解:,an=S(n)s(n1)=anan1=a数列an是以a为公差的等差数列故选A【点评】本题主要考察了数列的递推公式求解数列的通项公式,等差数列的定义的应用,属于数列知识的简单应用12【答案】C【解析】试题分析:由,则,两式作商,可得,所以,故选C考点:数列的通项公式二、填空题13【答案】0.6 【解析】解:随机变量服从正态分布N(2,2),曲线关于x=2对称,P(0)=P(4)=1P(4)=0.6,故答案为:0.6【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题14【答案】 【解析】解:F是抛物线y2=4x的焦点,F(1,0),准线方程x=1,设M(x1,y1),N(x2,y2),|MF|+|NF|=x1+1+x2+1=6,解得x1+x2=4,MNF的重心的横坐标为,MNF的重心到准线距离为故答案为:【点评】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离15【答案】【解析】试题分析:把原不等式看成是关于的一次不等式,在时恒成立,只要满足在时直线在轴上方即可,设关于的函数对任意的,当时,即,解得;当时,即,解得,的取值范围是;故答案为:考点:换主元法解决不等式恒成立问题.【方法点晴】本题考查了含有参数的一元二次不等式得解法,解题时应用更换主元的方法,使繁杂问题变得简洁,是易错题把原不等式看成是关于的一次不等式,在时恒成立,只要满足在时直线在轴上方即可.关键是换主元需要满足两个条件,一是函数必须是关于这个量的一次函数,二是要有这个量的具体范围.16【答案】【解析】,即函数为奇函数,又恒成立,故函数在上单调递增,不等式可转化为,即,解得:,即不等式的解集为,故答案为.17【答案】90 【解析】解:=与所成角的大小为90故答案为90【点评】本题用向量模的平方等于向量的平方来去掉绝对值18【答案】锐角三角形【解析】解:c=12是最大边,角C是最大角根据余弦定理,得cosC=0C(0,),角C是锐角,由此可得A、B也是锐角,所以ABC是锐角三角形故答案为:锐角三角形【点评】本题给出三角形的三条边长,判断三角形的形状,着重考查了用余弦定理解三角形和知识,属于基础题三、解答题19【答案】(1);(2).【解析】试题分析:(1)求导,再利用导数工具即可求得正解;(2)求导得,再分和两种情况进行讨论;试题解析:(1)解: 时, 则 令得列表+ -+单调递增单调递减单调递增 21 由上表知函数的值域为 (2)方法一:当时,函数在区间单调递增所以 即(舍) 当时,函数在区间单调递减 所以 符合题意 当时,当时,区间在单调递减当时,区间在单调递增 所以化简得:即所以或(舍)注:也可令则对在单调递减所以不符合题意综上所述:实数取值范围为方法二:当时,函数在区间单调递减 所以 符合题意 8分当时,函数在区间单调递增所以不符合题意 当时,当时,区间在单调递减当时,区间在单调递增 所以不符合题意综上所述:实数取值范围为20【答案】(本小题满分13分)解:()当为的中点时,平面 (1分)连结、,那么, , (3分)又平面, 平面,平面 (5分)()设为的中点,连结、, 在直角三角形中,, 又,,,平面 (10分),三棱锥的体积 (13分)21【答案】【解析】【知识点】导数的综合运用利用导数研究函数的单调性【试题解析】()对求导,得,所以,解得,所以()由,得,因为,所以对于任意,都有设,则令,解得当x变化时,与的变化情况如下表:所以当时,因为对于任意,都有成立,所以所以的最小值为()证明:“函数的图象在直线的下方”等价于“”,即要证,所以只要证由(),得,即(当且仅当时等号成立)所以只要证明当时,即可设,所以,令,解得由,得,所以在上为增函数所以,即所以故函数的图象在直线的下方22【答案】 【解析】解:(1)先排3个女生作为一个整体,与其余的5个元素做全排列有 A33A66=4320种(2)从中选5人,且要求女生只有2名,则男生有3人,先选再排,故有C32C53A55=3600种【点评】本题主要考查排列与组合及两个基本原理,排列数公式、组合数公式的应用,注意特殊元素和特殊位置要优先排23【答案】 【解析】解:()设等差数列的公差为d,由=4得=4,所以a2=3a1=3且d=a2a1=2,所以an=a1+(n1)d=2n1,=()由bn=an2n1,得bn=(2n1)2n1所以Tn=1+321+522+(2n1)2n1 2Tn=2+322+523+(2n3)2n1+(2n1)2n 得:Tn=1+22+222+22n1(2n1)2n=2(1+2+22+2n1)(2n1)2n1=2(2n1)2n1=2n(32n)3Tn=(2n3)2n+3【点评】本题主要考查数列求和的错位相减,错位相减法适用于通项为一等差数列乘一等比数列组成的新数列此方法是数列求和部分高考考查的重点及热点24【答案】 【解析】解:(1)设切点由,知抛物线在Q点处的切线斜率为,故所求切线方程为即y=x0xx02因为点P(0,4)在切线上所以,解得x0=4所求切线方程为y=2x4(2)设A(x1,y1),C(x2,y2)由题意知,直线AC的斜率k存在,由对称性,不妨设k0因直线AC过焦点F(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论