




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北镇市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若,则的值为( )A B C. D2 设为虚数单位,则()A B C D3 以下四个命题中,真命题的是( )A,B“对任意的,”的否定是“存在,C,函数都不是偶函数D中,“”是“”的充要条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力4 已知集合,则( )A B C D【命题意图】本题考查集合的交集运算,意在考查计算能力5 已知双曲线,分别在其左、右焦点,点为双曲线的右支上的一点,圆为三角形的内切圆,所在直线与轴的交点坐标为,与双曲线的一条渐近线平行且距离为,则双曲线的离心率是( )A B2 C D6 复数是虚数单位)的虚部为( )A B C D【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力7 已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为( )A B C D8 某三棱锥的三视图如图所示,该三棱锥的体积是( )A 2 B4 C D【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.9 平面与平面平行的条件可以是( )A内有无穷多条直线与平行B直线a,aC直线a,直线b,且a,bD内的任何直线都与平行10若定义在R上的函数f(x)满足f(0)=1,其导函数f(x)满足f(x)k1,则下列结论中一定错误的是( )ABCD11给出下列两个结论:若命题p:x0R,x02+x0+10,则p:xR,x2+x+10;命题“若m0,则方程x2+xm=0有实数根”的逆否命题为:“若方程x2+xm=0没有实数根,则m0”;则判断正确的是( )A对错B错对C都对D都错12在区域内任意取一点P(x,y),则x2+y21的概率是( )A0BCD二、填空题13函数f(x)=(x3)的最小值为14已知(1+x+x2)(x)n(nN+)的展开式中没有常数项,且2n8,则n=15定义在上的函数满足:,则不等式(其中为自然对数的底数)的解集为 .16已知数列中,函数在处取得极值,则_.17在(x2)9的二项展开式中,常数项的值为18在极坐标系中,直线l的方程为cos=5,则点(4,)到直线l的距离为三、解答题19(本小题满分13分)设,数列满足:,()若为方程的两个不相等的实根,证明:数列为等比数列;()证明:存在实数,使得对, )20在平面直角坐标系中,以坐标原点为极点,x轴非负半轴为极轴建立极坐标系已知直线l过点P(1,0),斜率为,曲线C:=cos2+8cos()写出直线l的一个参数方程及曲线C的直角坐标方程;()若直线l与曲线C交于A,B两点,求|PA|PB|的值 21(本小题满分13分)在四棱锥中,底面是直角梯形,()在棱上确定一点,使得平面;()若,求直线与平面所成角的大小22(本小题满分12分)已知数列的前n项和为,且满足(1)证明:数列为等比数列,并求数列的通项公式;(2)数列满足,其前n项和为,试求满足的最小正整数n【命题意图】本题是综合考察等比数列及其前项和性质的问题,其中对逻辑推理的要求很高.23(本小题满分12分)的内角所对的边分别为,垂直.(1)求的值;(2)若,求的面积的最大值.24已知斜率为1的直线l经过抛物线y2=2px(p0)的焦点F,且与抛物线相交于A,B两点,|AB|=4(I)求p的值;(II)若经过点D(2,1),斜率为k的直线m与抛物线有两个不同的公共点,求k的取值范围北镇市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】考点:函数值的求解.2 【答案】C【解析】【知识点】复数乘除和乘方【试题解析】故答案为:C3 【答案】D4 【答案】C【解析】当时,所以,故选C5 【答案】C【解析】试题分析:由题意知到直线的距离为,那么,得,则为等轴双曲线,离心率为.故本题答案选C. 1考点:双曲线的标准方程与几何性质【方法点睛】本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造的关系,处理方法与椭圆相同,但需要注意双曲线中与椭圆中的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出的值,可得;(2)建立的齐次关系式,将用表示,令两边同除以或化为的关系式,解方程或者不等式求值或取值范围.6 【答案】A【解析】,所以虚部为-1,故选A.7 【答案】【解析】试题分析:,故选B.考点:1.三视图;2.几何体的体积.8 【答案】B 9 【答案】D【解析】解:当内有无穷多条直线与平行时,a与可能平行,也可能相交,故不选A当直线a,a时,a与可能平行,也可能相交,故不选 B当直线a,直线b,且a 时,直线a 和直线 b可能平行,也可能是异面直线,故不选 C 当内的任何直线都与 平行时,由两个平面平行的定义可得,这两个平面平行,故选 D【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况10【答案】C【解析】解;f(x)=f(x)k1,k1,即k1,当x=时,f()+1k=,即f()1=故f(),所以f(),一定出错,故选:C11【答案】C【解析】解:命题p是一个特称命题,它的否定是全称命题,p是全称命题,所以正确根据逆否命题的定义可知正确故选C【点评】考查特称命题,全称命题,和逆否命题的概念12【答案】C【解析】解:根据题意,如图,设O(0,0)、A(1,0)、B(1,1)、C(0,1),分析可得区域表示的区域为以正方形OABC的内部及边界,其面积为1;x2+y21表示圆心在原点,半径为1的圆,在正方形OABC的内部的面积为=,由几何概型的计算公式,可得点P(x,y)满足x2+y21的概率是=;故选C【点评】本题考查几何概型的计算,解题的关键是将不等式(组)转化为平面直角坐标系下的图形的面积,进而由其公式计算二、填空题13【答案】12 【解析】解:因为x3,所以f(x)0由题意知: =令t=(0,),h(t)=t3t2因为 h(t)=t3t2 的对称轴x=,开口朝上知函数h(t)在(0,)上单调递增,(,)单调递减;故h(t)(0,由h(t)=f(x)=12故答案为:1214【答案】5【解析】二项式定理【专题】计算题【分析】要想使已知展开式中没有常数项,需(x)n(nN+)的展开式中无常数项、x1项、x2项,利用(x)n(nN+)的通项公式讨论即可【解答】解:设(x)n(nN+)的展开式的通项为Tr+1,则Tr+1=xnrx3r=xn4r,2n8,当n=2时,若r=0,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n2;当n=3时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n3;当n=4时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n4;当n=5时,r=0、1、2、3、4、5时,(1+x+x2)(x)n(nN+)的展开式中均没有常数项,故n=5适合题意;当n=6时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n6;当n=7时,若r=2,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n7;当n=8时,若r=2,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n2;综上所述,n=5时,满足题意故答案为:5【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题15【答案】【解析】考点:利用导数研究函数的单调性.【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不等式进行变形,可得,结合要求的不等式可知在不等式两边同时乘以,即,因此构造函数,求导利用函数的单调性解不等式.另外本题也可以构造满足前提的特殊函数,比如令也可以求解.116【答案】【解析】考点:1、利用导数求函数极值;2、根据数列的递推公式求通项公式.【方法点晴】本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:累加法、累乘法、构造法,形如的递推数列求通项往往用构造法,利用待定系数法构造成的形式,再根据等比数例求出的通项,进而得出的通项公式.17【答案】84 【解析】解:(x2)9的二项展开式的通项公式为 Tr+1=(1)rx183r,令183r=0,求得r=6,可得常数项的值为T7=84,故答案为:84【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题18【答案】3 【解析】解:直线l的方程为cos=5,化为x=5点(4,)化为点到直线l的距离d=52=3故答案为:3【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题三、解答题19【答案】 【解析】解:证明:, (3分),数列为等比数列 (4分)()证明:设,则由及得,在上递减,(8分)下面用数学归纳法证明:当时,当时,命题成立 (9分)假设当时命题成立,即,那么由在上递减得由得,当时命题也成立, (12分)由知,对一切命题成立,即存在实数,使得对,.20【答案】 【解析】解:()直线l过点P(1,0),斜率为,直线l的一个参数方程为(t为参数);=cos2+8cos,(1cos2)=8cos,即得(sin)2=4cos,y2=4x,曲线C的直角坐标方程为y2=4x() 把代入y2=4x整理得:3t28t16=0,设点A,B对应的参数分别为t1,t2,则,【点评】本题考查了直线参数方程及其应用、极坐标方程化为直角坐标方程,考查了推理能力与计算能力,属于中档题 21【答案】 【解析】解: ()当时,平面.设为上一点,且,连结、,那么,.,又平面, 平面,平面 (5分)()设、分别为、的中点,连结、,易知,平面,又,平面 (8分)建立空间直角坐标系(如图),其中轴,轴,则有,由知 (9分)设平面的法向量为,,则 即,取.设直线与平面所成角为,则,直线与平面所成角为. (13分)22【答案】【解析】(1)当,解得.(1分)当时,-得,即,(3分)即,又.所以是以2为首项,2为公比的等比数列.即故().(5分)23【答案】(1);(2)4【解析】试题分析:(1)由向量垂直知两向量的数量积为0,利用数量积的坐标运算公式可得关于的等式,从而可借助正弦定理化为边的关系,最后再余弦定理求得,由同角关系得;(2)由于已知边及角,因此在(1)中等式中由基本不等式可求得,从而由公式可得面积的最大值试题解析:(1),垂直,考点:向量的数量积,正弦定理,余弦定理,基本不等式11124【答案】 【解析】解:(I)由题意可知,抛物线y2=2px(p0)的焦点坐标为,准线方程为所以,直线l的方程为由消y并整理,得设A(x1,y1),B(x2,y2)则x1+x2=3p,又|AB|=|AF|+|BF|=x1+x2+p=4,所以,3p+p=4,所以p=1(II)由(I)可知,抛物线的方程为y2=2x由题意,直线m的方程为y=kx+(2k1)由方程组(1)可得ky
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵金属压延加工中的节能减排措施考核试卷
- 纤维制造企业运营与管理考核试卷
- 平遥现代工程技术学校
- 学生人工呼吸训练方案
- 麻醉学科核心体系解析
- 皮肤软组织感染(SSTI)
- 呼吸护理创新案例前沿进展
- 教育培训总结汇报
- 2025年雇主品牌调研-中国大陆区报告-任仕达
- 2025年公交优先战略对城市交通拥堵治理的促进作用研究报告
- 化疗病人的营养膳食课件
- 2024年宁夏中卫市沙坡头区民政和社会保障局招聘工作人员笔试高频考题难、易错点模拟试题(共500题)附带答案详解
- 高考日语复习:日语形容词用法专项课件
- 文化与科技的融合传统与现代的碰撞
- “拍卖委托书–古董拍卖”
- 《HSK标准教程1》课件-HSK1-L13
- 大型火灾战评报告
- 切口感染护理查房
- 高二语文选择性必修下册理解性默写及其答案
- 打印设备维护服务投标方案
- 碳纤维布行业营销策略方案
评论
0/150
提交评论