港闸区高中2018-2019学年上学期高二数学12月月考试题含解析_第1页
港闸区高中2018-2019学年上学期高二数学12月月考试题含解析_第2页
港闸区高中2018-2019学年上学期高二数学12月月考试题含解析_第3页
港闸区高中2018-2019学年上学期高二数学12月月考试题含解析_第4页
港闸区高中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

港闸区高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m),则该工程需挖掘的总土方数为( )A560m3B540m3C520m3D500m32 执行如图所示的程序框图,如果输入的t10,则输出的i( )A4 B5C6 D73 在等比数列中,且数列的前项和,则此数列的项数等于( )A4 B5 C6 D7【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一定要求,难度中等.4 若向量=(3,m),=(2,1),则实数m的值为( )ABC2D65 已知是虚数单位,若复数在复平面内对应的点在第四象限,则实数的值可以是( )A-2 B1 C2 D36 四面体 中,截面 是正方形, 则在下列结论中,下列说法错误的是( ) A B C. D异面直线与所成的角为7 已知x,yR,且,则存在R,使得xcos+ysin+1=0成立的P(x,y)构成的区域面积为( )A4B4CD +8 数列an是等差数列,若a1+1,a3+2,a5+3构成公比为q的等比数列,则q=( )A1B2C3D49 函数f(x)=3x+x3的零点所在的区间是( )A(0,1)B(1,2)C(2.3)D(3,4)10与命题“若xA,则yA”等价的命题是( )A若xA,则yAB若yA,则xAC若xA,则yAD若yA,则xA11sin(510)=( )ABCD12已知条件p:x2+x20,条件q:xa,若q是p的充分不必要条件,则a的取值范围可以是( )Aa1Ba1Ca1Da3二、填空题13调查某公司的四名推销员,其工作年限与年推销金额如表 推销员编号1234工作年限x/(年)351014年推销金额y/(万元)23712由表中数据算出线性回归方程为=x+若该公司第五名推销员的工作年限为8年,则估计他(她)的年推销金额为万元14已知命题p:xR,x2+2x+a0,若命题p是假命题,则实数a的取值范围是(用区间表示)15已知实数x,y满足,则目标函数z=x3y的最大值为16抛物线的准线与双曲线的两条渐近线所围成的三角形面积为_17在中,角的对边分别为,若,的面积,则边的最小值为_【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力18在平面直角坐标系中,记,其中为坐标原点,给出结论如下:若,则;对平面任意一点,都存在使得;若,则表示一条直线;若,且,则表示的一条线段且长度为其中所有正确结论的序号是 三、解答题19【徐州市第三中学20172018学年度高三第一学期月考】为了制作广告牌,需在如图所示的铁片上切割出一个直角梯形,已知铁片由两部分组成,半径为1的半圆及等腰直角三角形,其中,为裁剪出面积尽可能大的梯形铁片(不计损耗),将点放在弧上,点放在斜边上,且,设.(1)求梯形铁片的面积关于的函数关系式;(2)试确定的值,使得梯形铁片的面积最大,并求出最大值.20(本小题满分12分)111在如图所示的几何体中,是的中点,.(1)已知,求证:平面; (2)已知分别是和的中点,求证: 平面.21在直角坐标系xOy中,过点P(2,1)的直线l的倾斜角为45以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,曲线C的极坐标方程为sin2=4cos,直线l和曲线C的交点为A,B(1)求曲线C的直角坐标方程; (2)求|PA|PB| 22设函数f(x)=lnxax+1()当a=1时,求曲线f(x)在x=1处的切线方程;()当a=时,求函数f(x)的单调区间;()在()的条件下,设函数g(x)=x22bx,若对于x11,2,x20,1,使f(x1)g(x2)成立,求实数b的取值范围23已知函数的定义域为集合,(1)求,;(2)若,求实数的取值范围.24已知函数f(x)=lnxax+(aR)()当a=1时,求曲线y=f(x)在点(1,f(1)处的切线方程;()若函数y=f(x)在定义域内存在两个极值点,求a的取值范围港闸区高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:以顶部抛物线顶点为坐标原点,抛物线的对称轴为y轴建立直角坐标系,易得抛物线过点(3,1),其方程为y=,那么正(主)视图上部分抛物线与矩形围成的部分面积S1=2=4,下部分矩形面积S2=24,故挖掘的总土方数为V=(S1+S2)h=2820=560m3故选:A【点评】本题是对抛物线方程在实际生活中应用的考查,考查学生的计算能力,属于中档题2 【答案】【解析】解析:选B.程序运行次序为第一次t5,i2;第二次t16,i3;第三次t8,i4;第四次t4,i5,故输出的i5.3 【答案】B 4 【答案】A【解析】解:因为向量=(3,m),=(2,1),所以3=2m,解得m=故选:A【点评】本题考查向量共线的充要条件的应用,基本知识的考查5 【答案】A【解析】试题分析:,对应点在第四象限,故,A选项正确.考点:复数运算6 【答案】B【解析】试题分析:因为截面是正方形,所以,则平面平面,所以,由可得,所以A正确;由于可得截面,所以C正确;因为,所以,由,所以是异面直线与所成的角,且为,所以D正确;由上面可知,所以,而,所以,所以B是错误的,故选B. 1考点:空间直线与平面的位置关系的判定与证明.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与平面平行的判定定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的位置关系的判定定理和性质定理是解答的关键.7 【答案】 A【解析】解:作出不等式组对应的平面区域如图:对应的区域为三角形OAB,若存在R,使得xcos+ysin+1=0成立,则(cos+sin)=1,令sin=,则cos=,则方程等价为sin(+)=1,即sin(+)=,存在R,使得xcos+ysin+1=0成立,|1,即x2+y21,则对应的区域为单位圆的外部,由,解得,即B(2,2),A(4,0),则三角形OAB的面积S=4,直线y=x的倾斜角为,则AOB=,即扇形的面积为,则P(x,y)构成的区域面积为S=4,故选:A【点评】本题主要考查线性规划的应用,根据条件作出对应的图象,求出对应的面积是解决本题的关键综合性较强8 【答案】A【解析】解:设等差数列an的公差为d,由a1+1,a3+2,a5+3构成等比数列,得:(a3+2)2=(a1+1)(a5+3),整理得:a32+4a3+4=a1a5+3a1+a5+3即(a1+2d)2+4(a1+2d)+4=a1(a1+4d)+4a1+4d+3化简得:(2d+1)2=0,即d=q=1故选:A【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题9 【答案】A【解析】解:f(0)=20,f(1)=10,由零点存在性定理可知函数f(x)=3x+x3的零点所在的区间是(0,1)故选A【点评】本题主要考查了函数的零点的判定定理,这种问题只要代入所给的区间的端点的值进行检验即可,属于基础题10【答案】D【解析】解:由命题和其逆否命题等价,所以根据原命题写出其逆否命题即可与命题“若xA,则yA”等价的命题是若yA,则xA故选D11【答案】C【解析】解:sin(510)=sin(150)=sin150=sin30=,故选:C12【答案】A【解析】解:条件p:x2+x20,条件q:x2或x1q是p的充分不必要条件a1 故选A二、填空题13【答案】 【解析】解:由条件可知=(3+5+10+14)=8, =(2+3+7+12)=6,代入回归方程,可得a=,所以=x,当x=8时,y=,估计他的年推销金额为万元故答案为:【点评】本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题14【答案】(1,+) 【解析】解:命题p:xR,x2+2x+a0,当命题p是假命题时,命题p:xR,x2+2x+a0是真命题;即=44a0,a1;实数a的取值范围是(1,+)故答案为:(1,+)【点评】本题考查了命题与命题的否定的真假性相反问题,也考查了二次不等式恒成立的问题,是基础题目15【答案】5 【解析】解:由z=x3y得y=,作出不等式组对应的平面区域如图(阴影部分):平移直线y=,由图象可知当直线y=经过点C时,直线y=的截距最小,此时z最大,由,解得,即C(2,1)代入目标函数z=x3y,得z=23(1)=2+3=5,故答案为:516【答案】【解析】【知识点】抛物线双曲线【试题解析】抛物线的准线方程为:x=2;双曲线的两条渐近线方程为:所以故答案为:17【答案】18【答案】【解析】解析:本题考查平面向量基本定理、坐标运算以及综合应用知识解决问题的能力由得,错误;与不共线,由平面向量基本定理可得,正确;记,由得,点在过点与平行的直线上,正确;由得,与不共线,正确;设,则有,且,表示的一条线段且线段的两个端点分别为、,其长度为,错误三、解答题19【答案】(1),其中.(2)时,【解析】试题分析:(1)求梯形铁片的面积关键是用表示上下底及高,先由图形得,这样可得高,再根据等腰直角三角形性质得,最后根据梯形面积公式得,交代定义域(2)利用导数求函数最值:先求导数,再求导函数零点,列表分析函数单调性变化规律,确定函数最值试题解析:(1)连接,根据对称性可得且,所以,所以,其中考点:利用导数求函数最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f(x)0或f(x)0求单调区间;第二步:解f(x)0得两个根x1、x2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小20【答案】(1)详见解析;(2)详见解析.【解析】试题分析:(1)根据,所以平面就是平面,连接DF,AC是等腰三角形ABC和ACF的公共底边,点D是AC的中点,所以,即证得平面的条件;(2)要证明线面平行,可先证明面面平行,取的中点为,连接,根据中位线证明平面平面,即可证明结论.试题解析:证明:(1),与确定平面.如图,连结. ,是的中点,.同理可得.又,平面,平面,即平面.考点:1.线线,线面垂直关系;2.线线,线面,面面平行关系.【方法点睛】本题考查了立体几何中的平行和垂直关系,属于中档题型,重点说说证明平行的方法,当涉及证明线面平行时,一种方法是证明平面外的线与平面内的线平行,一般是构造平行四边形或是构造三角形的中位线,二种方法是证明面面平行,则线面平行,因为直线与直线外一点确定一个平面,所以所以一般是在某条直线上再找一点,一般是中点,连接构成三角形,证明另两条边与平面平行.21【答案】 【解析】(1)sin2=4cos,2sin2=4cos,cos=x,sin=y,曲线C的直角坐标方程为y2=4x (2)直线l过点P(2,1),且倾斜角为45l的参数方程为(t为参数)代入 y2=4x 得t26t14=0设点A,B对应的参数分别t1,t2t1t2=14|PA|PB|=14 22【答案】 【解析】解:函数f(x)的定义域为(0,+),(2分)()当a=1时,f(x)=lnxx1,f(1)=2,f(1)=0,f(x)在x=1处的切线方程为y=2(5分)()=(6分)令f(x)0,可得0x1,或x2;令f(x)0,可得1x2故当时,函数f(x)的单调递增区间为(1,2);单调递减区间为(0,1),(2,+).()当时,由()可知函数f(x)在(1,2)上为增函数,函数f(x)在1,2上的最小值为f(1)=(9分)若对于x11,2,x20,1使f(x1)g(x2)成立,等价于g(x)在0,1上的最小值不大于f(x)在(0,e上的最小值(*) (10分)又,x0,1当b0时,g(x)在0,1上为增函数,与(*)矛盾当0b1时,由及0b1得,当b1时,g(x)在0,1上为减函数,此时b1(11分)综上,b的取值范围是(12分)【点评】本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查恒成立问题,解题的关键是将对于x11,2,x20,1使f(x1)g(x2)成立,转化为g(x)在0,1上的最小值不大于f(x)在(0,e上的最小值23【答案】(1),;(2)或。【解析】试题分析:(1)由题可知:,所以,因此集合,画数轴表示出集合A,集合B,观察图形可求,观察数轴,可以求出,则;(2)由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论