淮北市高中2018-2019学年上学期高二数学12月月考试题含解析_第1页
淮北市高中2018-2019学年上学期高二数学12月月考试题含解析_第2页
淮北市高中2018-2019学年上学期高二数学12月月考试题含解析_第3页
淮北市高中2018-2019学年上学期高二数学12月月考试题含解析_第4页
淮北市高中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

淮北市高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息,可确定被抽测的人数及分数在内的人数分别为( )A20,2 B24,4 C25,2 D25,42 函数在一个周期内的图象如图所示,此函数的解析式为( )A B C D3 已知f(x)是R上的偶函数,且在(,0)上是增函数,设,b=f(log43),c=f(0.41.2)则a,b,c的大小关系为( )AacbBbacCcabDcba4 执行如图所示的程序,若输入的,则输出的所有的值的和为( )A243B363C729D1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力5 为了得到函数的图象,只需把函数y=sin3x的图象( )A向右平移个单位长度B向左平移个单位长度C向右平移个单位长度D向左平移个单位长度6 复数z=(mR,i为虚数单位)在复平面上对应的点不可能位于( )A第一象限B第二象限C第三象限D第四象限7 函数f(x)=1xlnx的零点所在区间是( )A(0,)B(,1)C(1,2)D(2,3)8 “”是“A=30”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也必要条件9 已知函数f(x)=x2,则函数y=f(x)的大致图象是( )ABCD10定义在R上的奇函数f(x),满足,且在(0,+)上单调递减,则xf(x)0的解集为( )ABCD11在如图55的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x+y+z的值为( )120.51xyzA1B2C3D412已知双曲线,分别在其左、右焦点,点为双曲线的右支上的一点,圆为三角形的内切圆,所在直线与轴的交点坐标为,与双曲线的一条渐近线平行且距离为,则双曲线的离心率是( )A B2 C D二、填空题13已知函数,则的值是_,的最小正周期是_.【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力14已知向量满足,则与的夹角为 . 【命题意图】本题考查向量的数量积、模及夹角知识,突出对向量的基础运算及化归能力的考查,属于容易题.15满足关系式2,3A1,2,3,4的集合A的个数是16已知a=(cosxsinx)dx,则二项式(x2)6展开式中的常数项是17如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点从A点测得 M点的仰角MAN=60,C点的仰角CAB=45以及MAC=75;从C点测得MCA=60已知山高BC=100m,则山高MN=m18设,记不超过的最大整数为,令.现有下列四个命题: 对任意的,都有恒成立;若,则方程的实数解为;若(),则数列的前项之和为;当时,函数的零点个数为,函数的零点个数为,则.其中的真命题有_.(写出所有真命题的编号)【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。三、解答题19提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20x200时,车流速度v是车流密度x的一次函数()当0x200时,求函数v(x)的表达式;()当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值(精确到1辆/小时) 20已知函数f(x)=(ax2+x1)ex,其中e是自然对数的底数,aR()若a=0,求曲线f(x)在点(1,f(1)处的切线方程;()若,求f(x)的单调区间;()若a=1,函数f(x)的图象与函数的图象仅有1个公共点,求实数m的取值范围 21【镇江2018届高三10月月考文科】已知函数,其中实数为常数,为自然对数的底数.(1)当时,求函数的单调区间;(2)当时,解关于的不等式;(3)当时,如果函数不存在极值点,求的取值范围.22已知集合A=x|x1,或x2,B=x|2p1xp+3(1)若p=,求AB;(2)若AB=B,求实数p的取值范围23(本小题满分12分)ABC的三内角A,B,C的对边分别为a,b,c,AD是BC边上的中线(1)求证:AD;(2)若A120,AD,求ABC的面积24已知f(x)=|x|+x|()关于x的不等式f(x)a23a恒成立,求实数a的取值范围;()若f(m)+f(n)=4,且mn,求m+n的取值范围 淮北市高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】考点:茎叶图,频率分布直方图2 【答案】B【解析】考点:三角函数的图象与性质3 【答案】C【解析】解:由题意f(x)=f(|x|)log431,|log43|1;2|ln|=|ln3|1;|0.41.2|=|1.2|2|0.41.2|ln|log43|又f(x)在(,0上是增函数且为偶函数,f(x)在0,+)上是减函数cab故选C4 【答案】D【解析】当时,是整数;当时,是整数;依次类推可知当时,是整数,则由,得,所以输出的所有的值为3,9,27,81,243,729,其和为1092,故选D5 【答案】A【解析】解:把函数y=sin3x的图象向右平移个单位长度,可得y=sin3(x)=sin(3x)的图象,故选:A【点评】本题主要考查函数y=Asin(x+)的图象变换规律,属于基础题6 【答案】C【解析】解:z=+i,当1+m0且1m0时,有解:1m1;当1+m0且1m0时,有解:m1;当1+m0且1m0时,有解:m1;当1+m0且1m0时,无解;故选:C【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题7 【答案】C【解析】解:f(1)=10,f(2)=12ln2=ln0,函数f(x)=1xlnx的零点所在区间是(1,2)故选:C【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反8 【答案】B【解析】解:“A=30”“”,反之不成立故选B【点评】本题考查充要条件的判断和三角函数求值问题,属基本题9 【答案】A【解析】解:由题意可得,函数的定义域x0,并且可得函数为非奇非偶函数,满足f(1)=f(1)=1,可排除B、C两个选项当x0时,t=在x=e时,t有最小值为函数y=f(x)=x2,当x0时满足y=f(x)e20,因此,当x0时,函数图象恒在x轴上方,排除D选项故选A10【答案】B【解析】解:函数f(x)是奇函数,在(0,+)上单调递减,且f ()=0,f ()=0,且在区间(,0)上单调递减,当x0,当x0时,f(x)0,此时xf(x)0当x0,当0x时,f(x)0,此时xf(x)0综上xf(x)0的解集为故选B11【答案】A【解析】解:因为每一纵列成等比数列,所以第一列的第3,4,5个数分别是,第三列的第3,4,5个数分别是,又因为每一横行成等差数列,第四行的第1、3个数分别为,所以y=,第5行的第1、3个数分别为,所以z=所以x+y+z=+=1故选:A【点评】本题主要考查等差数列、等比数列的通项公式等基础知识,考查运算求解能力12【答案】C【解析】试题分析:由题意知到直线的距离为,那么,得,则为等轴双曲线,离心率为.故本题答案选C. 1考点:双曲线的标准方程与几何性质【方法点睛】本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造的关系,处理方法与椭圆相同,但需要注意双曲线中与椭圆中的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出的值,可得;(2)建立的齐次关系式,将用表示,令两边同除以或化为的关系式,解方程或者不等式求值或取值范围.二、填空题13【答案】,.【解析】,又,的定义域为,将的图象如下图画出,从而可知其最小正周期为,故填:,.14【答案】【解析】15【答案】4 【解析】解:由题意知,满足关系式2,3A1,2,3,4的集合A有:2,3,2,3,1,2,3,4,2,3,1,4,故共有4个,故答案为:416【答案】240 【解析】解:a=(cosxsinx)dx=(sinx+cosx)=11=2,则二项式(x2)6=(x2+)6展开始的通项公式为Tr+1=2rx123r,令123r=0,求得r=4,可得二项式(x2)6展开式中的常数项是24=240,故答案为:240【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题17【答案】150 【解析】解:在RTABC中,CAB=45,BC=100m,所以AC=100m在AMC中,MAC=75,MCA=60,从而AMC=45,由正弦定理得,因此AM=100m在RTMNA中,AM=100m,MAN=60,由得MN=100=150m故答案为:15018【答案】【解析】对于,由高斯函数的定义,显然,是真命题;对于,由得,即.当 时,此时化为,方程无解;当 时,此时化为,所以或,即或,所以原方程无解.故是假命题;对于,(),所以数列的前项之和为,故是真命题;对于,由三、解答题19【答案】 【解析】解:() 由题意:当0x20时,v(x)=60;当20x200时,设v(x)=ax+b再由已知得,解得故函数v(x)的表达式为()依题并由()可得当0x20时,f(x)为增函数,故当x=20时,其最大值为6020=1200当20x200时,当且仅当x=200x,即x=100时,等号成立所以,当x=100时,f(x)在区间(20,200上取得最大值综上所述,当x=100时,f(x)在区间0,200上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时答:() 函数v(x)的表达式() 当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时 20【答案】 【解析】解:()a=0,f(x)=(x1)ex,f(x)=ex+(x1)ex=xex,曲线f(x)在点(1,f(1)处的切线斜率为k=f(1)=e又f(1)=0,所求切线方程为y=e(x1),即exy4=0()f(x)=(2ax+1)ex+(ax2+x1)ex=ax2+(2a+1)xex=x(ax+2a+1)ex,若a=,f(x)=x2ex0,f(x)的单调递减区间为(,+),若a,当x或x0时,f(x)0;当x0时,f(x)0f(x)的单调递减区间为(,0,+);单调递增区间为,0()当a=1时,由()知,f(x)=(x2+x1)ex在(,1)上单调递减,在1,0单调递增,在0,+)上单调递减,f(x)在x=1处取得极小值f(1)=,在x=0处取得极大值f(0)=1,由,得g(x)=2x2+2x当x1或x0时,g(x)0;当1x0时,g(x)0g(x)在(,1上单调递增,在1,0单调递减,在0,+)上单调递增故g(x)在x=1处取得极大值,在x=0处取得极小值g(0)=m,数f(x)与函数g(x)的图象仅有1个公共点,g(1)f(1)或g(0)f(0),即.【点评】本题考查了曲线的切线方程问题,考查函数的单调性、极值问题,考查导数的应用,是一道中档题21【答案】(1)单调递增区间为 ;单调递减区间为 (2) (3)【解析】试题分析:把代入由于对数的真数为正数,函数定义域为,所以函数化为,求导后在定义域下研究函数的单调性给出单调区间;代入,分和两种情况解不等式;当时,求导,函数不存在极值点,只需恒成立,根据这个要求得出的范围.试题解析: (2)时,当时,原不等式可化为 记,则,当时,所以在单调递增,又,故不等式解为; 当时,原不等式可化为,显然不成立, 综上,原不等式的解集为 22【答案】 【解析】解:(1)当p=时,B=x|0x,AB=x|2x;(2)当AB=B时,BA;令2p1p+3,解得p4,此时B=,满足题意;当p4时,应满足,解得p不存在;综上,实数p的取值范围p423【答案】【解析】解:(1)证明:D是BC的中点,BDDC.法一:在ABD与ACD中分别由余弦定理得c2AD22ADcosADB,b2AD22ADcosADC,得c2b22AD2,即4AD22b22c2a2,AD.法二:在ABD中,由余弦定理得AD2c22ccos Bc2ac,AD.(2)A1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论