




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
掇刀区一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知复数z满足zi=2i,i为虚数单位,则z=( )A12iB1+2iC12iD1+2i2 某单位综合治理领导小组成员之问的领导关系可以用框图表示,这种框图通常称为( )A程序流程图B工序流程图C知识结构图D组织结构图3 已知圆的半径为1,为该圆的两条切线,为两切点,那么的最小值为 A、 B、 C、 D、 4 复数的虚部为( )A2B2iC2D2i5 设全集U=MN=1,2,3,4,5,MUN=2,4,则N=( )A1,2,3B1,3,5C1,4,5D2,3,46 两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上若圆锥底面面积是球面面积的,则这两个圆锥的体积之比为( )A2:1B5:2C1:4D3:17 已知直线xy+a=0与圆心为C的圆x2+y2+2x4y+7=0相交于A,B两点,且=4,则实数a的值为( )A或B或3C或5D3或58 已知,若存在,使得,则的取值范围是( )A B C. D9 复数i1(i是虚数单位)的虚部是( )A1B1CiDi10在二项式的展开式中,含x4的项的系数是( )A10B10C5D511已知函数,且,则( )A B C D【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力12若函数f(x)=ax2+bx+1是定义在1a,2a上的偶函数,则该函数的最大值为( )A5B4C3D2二、填空题13圆心在原点且与直线相切的圆的方程为_ .【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题.14设幂函数的图象经过点,则= 15抛物线y=x2的焦点坐标为( )A(0,)B(,0)C(0,4)D(0,2)16Sn=+=17设函数,若恰有2个零点,则实数的取值范围是 18已知为常数,若,则_.三、解答题19(本题满分15分)已知抛物线的方程为,点在抛物线上(1)求抛物线的方程;(2)过点作直线交抛物线于不同于的两点,若直线,分别交直线于,两点,求最小时直线的方程【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.20(本小题满分13分)已知函数,()讨论的单调性;()证明:当时,有唯一的零点,且21(本小题满分12分)已知在中,角所对的边分别为且 .()求角的大小;() 若,的面积为,求. 22已知是等差数列,是等比数列,为数列的前项和,且,()(1)求和;(2)若,求数列的前项和23(本小题满分10分)选修4-5:不等式选讲已知函数(1)若不等式的解集为,求实数的值;(2)若不等式,对任意的实数恒成立,求实数的最小值【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力24(本题满分14分)已知两点与是直角坐标平面内两定点,过曲线上一点作轴的垂线,垂足为,点满足,且.(1)求曲线的方程;(2)设直线与曲线交于两点,坐标原点到直线的距离为,求面积的最大值.【命题意图】本题考查向量的基本运算、轨迹的求法、直线与椭圆的位置关系,本题知识交汇性强,最值的求解有一定技巧性,同时还要注意特殊情形时三角形的面积总之该题综合性强,难度大掇刀区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:由zi=2i得,故选A2 【答案】D【解析】解:用来描述系统结构的图示是结构图,某单位综合治理领导小组成员之问的领导关系可以用组织结构图表示故选D【点评】本题考查结构图和流程图的概念,是基础题解题时要认真审题,仔细解答3 【答案】D.【解析】设,向量与的夹角为,依不等式的最小值为.4 【答案】C【解析】解:复数=1+2i的虚部为2故选;C【点评】本题考查了复数的运算法则、虚部的定义,属于基础题5 【答案】B【解析】解:全集U=MN=1,2,3,4,5,MCuN=2,4,集合M,N对应的韦恩图为所以N=1,3,5故选B6 【答案】D【解析】解:设球的半径为R,圆锥底面的半径为r,则r2=4R2=,r=球心到圆锥底面的距离为=圆锥的高分别为和两个圆锥的体积比为: =1:3故选:D7 【答案】C【解析】解:圆x2+y2+2x4y+7=0,可化为(x+)2+(y2)2=8=4,22cosACB=4cosACB=,ACB=60圆心到直线的距离为,=,a=或5故选:C8 【答案】A 【解析】考点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值. 【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题利用导数研究函数的单调性进一步求函数最值的步骤:确定函数的定义域;对求导;令,解不等式得的范围就是递增区间;令,解不等式得的范围就是递减区间;根据单调性求函数的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小). 9 【答案】A【解析】解:由复数虚部的定义知,i1的虚部是1,故选A【点评】该题考查复数的基本概念,属基础题10【答案】B【解析】解:对于,对于103r=4,r=2,则x4的项的系数是C52(1)2=10故选项为B【点评】二项展开式的通项是解决二项展开式的特定项问题的工具11【答案】D12【答案】A【解析】解:函数f(x)=ax2+bx+1是定义在1a,2a上的偶函数,可得b=0,并且1+a=2a,解得a=1,所以函数为:f(x)=x2+1,x2,2,函数的最大值为:5故选:A【点评】本题考查函数的最大值的求法,二次函数的性质,考查计算能力二、填空题13【答案】【解析】由题意,圆的半径等于原点到直线的距离,所以,故圆的方程为.14【答案】【解析】试题分析:由题意得考点:幂函数定义15【答案】D【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,焦点坐标为(0,2)故选:D【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键16【答案】 【解析】解: =(),Sn=+= (1)+()+()+()=(1)=,故答案为:【点评】本题主要考查利用裂项法进行数列求和,属于中档题17【答案】【解析】考点:1、分段函数;2、函数的零点.【方法点晴】本题考查分段函数,函数的零点,以及逻辑思维能力、等价转化能力、运算求解能力、分类讨论的思想、数形结合思想和转化化归思想,综合性强,属于较难题型.首先利用分类讨论思想结合数学结合思想,对于轴的交点个数进行分情况讨论,特别注意:1.在时也轴有一个交点式,还需且;2. 当时,与轴无交点,但中和,两交点横坐标均满足.18【答案】【解析】试题分析:由,得,即,比较系数得,解得或,则.考点:函数的性质及其应用.【方法点晴】本题主要考查了函数的性质及其应用,其中解答中涉及到函数解析式的化简与运算,求解解析式中的代入法的应用和多项式相等问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定难度,属于中档试题,本题的解答中化简的解析式是解答的关键.三、解答题19【答案】(1);(2)【解析】(1)点在抛物线上,2分即抛物线的方程为;5分 20【答案】(本小题满分13分)解:(), (1分)当时,解得或,解得,的递增区间为和,的递减区间为 (4分)当时,的递增区间为,递减区间为 (5分)当时,解得,解得或的递增区间为,的递减区间为和 (7分)()当时,由()知上递减,在上递增,在上递减,在没有零点 (9分),在上递减,在上,存在唯一的,使得且 (12分)综上所述,当时,有唯一的零点,且 (13分)21【答案】解:()由正弦定理及已知条件有, 即. 3分 由余弦定理得:,又,故. 6分 () 的面积为, 8分 又由()及得, 10分 由 解得或. 12分22【答案】(1),或,;(2).【解析】试题解析:(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 营养师考试备考 2025年实操技能冲刺模拟试卷
- 2025年春季英语四六级专项训练:冲刺押题模拟试卷
- 2025年公务员考试行测言语理解专项试卷:逻辑判断与推理能力冲刺押题
- 2025年CPA考试 会计科目全真模拟试卷及解题技巧
- 2026届佛山市普通高中化学高三第一学期期末质量检测模拟试题含解析
- 安徽省示范中学培优联盟2026届高二化学第一学期期末经典试题含答案
- 王牌交易平台拆分课件
- 2026届安徽省部分高中化学高一上期中质量检测模拟试题含解析
- 言情小说竞赛题目及答案
- 第十三讲蛋白质分子设计
- 性骚扰培训课件
- 偏执性反应的护理查房
- 定密管理制度
- 绿豆芽成长记-A4打印版
- 3D打印技术教程
- 食材配送投标方案(技术方案)
- 佩戴腰围护理规范
- 建设工程质量检测人员考试:建设工程质量检测人员真题模拟汇编(共906题)
- 中国地理(第二版)赵济王静爱
- 【课件】等差数列的概念2说课课件-2022-2023学年高二上学期数学人教A版(2019)选择性必修第二册
- 前交叉韧带损伤PPT
评论
0/150
提交评论