抚宁区高中2018-2019学年上学期高三数学期末模拟试卷含答案_第1页
抚宁区高中2018-2019学年上学期高三数学期末模拟试卷含答案_第2页
抚宁区高中2018-2019学年上学期高三数学期末模拟试卷含答案_第3页
抚宁区高中2018-2019学年上学期高三数学期末模拟试卷含答案_第4页
抚宁区高中2018-2019学年上学期高三数学期末模拟试卷含答案_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

抚宁区高中2018-2019学年上学期高三数学期末模拟试卷含答案班级_ 座号_ 姓名_ 分数_一、选择题1 函数y=(x25x+6)的单调减区间为( )A(,+)B(3,+)C(,)D(,2)2 下列各组函数中,表示同一函数的是( )A、x与 B、 与 C、与 D、与3 等比数列an满足a1=3,a1+a3+a5=21,则a2a6=( )A6B9C36D724 直线l平面,直线m平面,命题p:“若直线m,则ml”的逆命题、否命题、逆否命题中真命题的个数为( )A0B1C2D35 ,分别为双曲线(,)的左、右焦点,点在双曲线上,满足,若的内切圆半径与外接圆半径之比为,则该双曲线的离心率为( )A. B.C. D. 【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力6 若圆心坐标为的圆在直线上截得的弦长为,则这个圆的方程是( )A B C D7 已知x0,y0, +=1,不等式x+y2m1恒成立,则m的取值范围( )A(,B(,C(,D(,8 二项式(x2)6的展开式中不含x3项的系数之和为( )A20B24C30D369 等比数列的前n项,前2n项,前3n项的和分别为A,B,C,则( )AB2=ACBA+C=2BCB(BA)=A(CA)DB(BA)=C(CA)10已知,则的大小关系是( )A B C D11已知数列满足().若数列的最大项和最小项分别为和,则( )A B C D12设抛物线C:y2=2px(p0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( )Ay2=4x或y2=8xBy2=2x或y2=8xCy2=4x或y2=16xDy2=2x或y2=16x二、填空题13某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔小时各服一次药,每次一片,每片毫克假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用若该患者第一天上午点第一次服药,则第二天上午点服完药时,药在其体内的残留量是毫克,若该患者坚持长期服用此药明显副作用(此空填“有”或“无”)14如图所示22方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复若填入A方格的数字大于B方格的数字,则不同的填法共有种(用数字作答)ABCD15已知x,y满足条件,则函数z=2x+y的最大值是16log3+lg25+lg47(9.8)0=17已知函数f(x)是定义在R上的单调函数,且满足对任意的实数x都有ff(x)2x=6,则f(x)+f(x)的最小值等于18若命题“xR,|x2|kx+1”为真,则k的取值范围是三、解答题19在数列中,其中,()当时,求的值;()是否存在实数,使构成公差不为0的等差数列?证明你的结论;()当时,证明:存在,使得20(本小题满分10分)求经过点的直线,且使到它的距离相等的直线方程.21如图1,在RtABC中,C=90,BC=3,AC=6,D、E分别是AC、AB上的点,且DEBC,将ADE沿DE折起到A1DE的位置,使A1DCD,如图2()求证:平面A1BC平面A1DC;()若CD=2,求BD与平面A1BC所成角的正弦值;()当D点在何处时,A1B的长度最小,并求出最小值22已知Sn为数列an的前n项和,且满足Sn=2ann2+3n+2(nN*)()求证:数列an+2n是等比数列;()设bn=ansin,求数列bn的前n项和;()设Cn=,数列Cn的前n项和为Pn,求证:Pn 23已知a,b,c分别是ABC内角A,B,C的对边,且csinA=acosC(I)求C的值;()若c=2a,b=2,求ABC的面积24【常熟中学2018届高三10月阶段性抽测(一)】如图,某公司的LOGO图案是多边形,其设计创意如下:在长、宽的长方形中,将四边形沿直线翻折到(点是线段上异于的一点、点是线段上的一点),使得点落在线段上.(1)当点与点重合时,求面积;(2)经观察测量,发现当最小时,LOGO最美观,试求此时LOGO图案的面积.抚宁区高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1 【答案】B【解析】解:令t=x25x+6=(x2)(x3)0,可得 x2,或 x3,故函数y=(x25x+6)的定义域为(,2)(3,+)本题即求函数t在定义域(,2)(3,+)上的增区间结合二次函数的性质可得,函数t在(,2)(3,+)上的增区间为 (3,+),故选B2 【答案】C【解析】试题分析:如果两个函数为同一函数,必须满足以下两点:定义域相同,对应法则相同。选项A中两个函数定义域不同,选项B中两个函数对应法则不同,选项D中两个函数定义域不同。故选C。考点:同一函数的判定。3 【答案】D【解析】解:设等比数列an的公比为q,a1=3,a1+a3+a5=21,3(1+q2+q4)=21,解得q2=2则a2a6=9q6=72故选:D4 【答案】B【解析】解:直线l平面,直线m平面,命题p:“若直线m,则ml”,命题P是真命题,命题P的逆否命题是真命题;P:“若直线m不垂直于,则m不垂直于l”,P是假命题,命题p的逆命题和否命题都是假命题故选:B5 【答案】D 【解析】,即为直角三角形,则,.所以内切圆半径,外接圆半径.由题意,得,整理,得,双曲线的离心率,故选D.6 【答案】B【解析】考点:圆的方程.11117 【答案】D【解析】解:x0,y0, +=1,不等式x+y2m1恒成立,所以(x+y)(+)=10+10=16,当且仅当时等号成立,所以2m116,解得m;故m的取值范围是(;故选D8 【答案】A【解析】解:二项式的展开式的通项公式为Tr+1=(1)rx123r,令123r=3,求得r=3,故展开式中含x3项的系数为(1)3=20,而所有系数和为0,不含x3项的系数之和为20,故选:A【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题9 【答案】C【解析】解:若公比q=1,则B,C成立;故排除A,D;若公比q1,则A=Sn=,B=S2n=,C=S3n=,B(BA)=()=(1qn)(1qn)(1+qn)A(CA)=()=(1qn)(1qn)(1+qn);故B(BA)=A(CA);故选:C【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力10【答案】B【解析】试题分析:函数在R上单调递减,所以,且,而,所以。故选B。考点:指数式比较大小。11【答案】D【解析】试题分析:数列,当时,,即;当时,即.因此数列先增后减,为最大项,,最小项为,的值为故选D.考点:数列的函数特性.12【答案】 C【解析】解:抛物线C方程为y2=2px(p0),焦点F坐标为(,0),可得|OF|=,以MF为直径的圆过点(0,2),设A(0,2),可得AFAM,RtAOF中,|AF|=,sinOAF=,根据抛物线的定义,得直线AO切以MF为直径的圆于A点,OAF=AMF,可得RtAMF中,sinAMF=,|MF|=5,|AF|=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x故选:C方法二:抛物线C方程为y2=2px(p0),焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5,4),代入抛物线方程得p210p+16=0,所以p=2或p=8所以抛物线C的方程为y2=4x或y2=16x故答案C【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题二、填空题13【答案】, 无【解析】【知识点】等比数列【试题解析】设该病人第n次服药后,药在体内的残留量为毫克,所以)=300,=350由,所以是一个等比数列,所以所以若该患者坚持长期服用此药无明显副作用。故答案为:, 无 14【答案】27 【解析】解:若A方格填3,则排法有232=18种,若A方格填2,则排法有132=9种,根据分类计数原理,所以不同的填法有18+9=27种故答案为:27【点评】本题考查了分类计数原理,如何分类是关键,属于基础题15【答案】4 【解析】解:由约束条件作出可行域如图,化目标函数z=2x+y为y=2x+z,由图可知,当直线y=2x+z过点A(2,0)时,直线y=2x+z在y轴上的截距最大,即z最大,此时z=2(2)+0=4故答案为:4【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题16【答案】 【解析】解:原式=+lg10021=+221=,故选:【点评】本题考查了对数的运算性质,属于基础题17【答案】6 【解析】解:根据题意可知:f(x)2x是一个固定的数,记为a,则f(a)=6,f(x)2x=a,即f(x)=a+2x,当x=a时,又a+2a=6,a=2,f(x)=2+2x,f(x)+f(x)=2+2x+2+2x=2x+2x+42+4=6,当且仅当x=0时成立,f(x)+f(x)的最小值等于6,故答案为:6【点评】本题考查函数的最值,考查运算求解能力,注意解题方法的积累,属于中档题18【答案】1,) 【解析】解:作出y=|x2|,y=kx+1的图象,如图所示,直线y=kx+1恒过定点(0,1),结合图象可知k1,)故答案为:1,)【点评】本题考查全称命题,考查数形结合的数学思想,比较基础三、解答题19【答案】【解析】【知识点】数列综合应用【试题解析】(),()成等差数列,即,即,将,代入上式, 解得经检验,此时的公差不为0存在,使构成公差不为0的等差数列(),又,令由,将上述不等式相加,得,即取正整数,就有20【答案】或【解析】 21【答案】【解析】【分析】()在图1中,ABC中,由已知可得:ACDE在图2中,DEA1D,DEDC,即可证明DE平面A1DC,再利用面面垂直的判定定理即可证明()如图建立空间直角坐标系,设平面A1BC的法向量为,利用,BE与平面所成角的正弦值为()设CD=x(0x6),则A1D=6x,利用=(0x6),即可得出【解答】()证明:在图1中,ABC中,DEBC,ACBC,则ACDE,在图2中,DEA1D,DEDC,又A1DDC=D,DE平面A1DC,DEBC,BC平面A1DC,BC平面A1BC,平面A1BC平面A1DC()解:如图建立空间直角坐标系:A1(0,0,4)B(3,2,0),C(0,2,0),D(0,0,0),E(2,0,0)则,设平面A1BC的法向量为则,解得,即则BE与平面所成角的正弦值为()解:设CD=x(0x6),则A1D=6x,在(2)的坐标系下有:A1(0,0,6x),B(3,x,0),=(0x6),即当x=3时,A1B长度达到最小值,最小值为22【答案】 【解析】(I)证明:由Sn=2ann2+3n+2(nN*),当n2时,an=SnSn1=2an2an12n+4,变形为an+2n=2an1+2(n1),当n=1时,a1=S1=2a11+3+2,解得a1=4,a1+2=2,数列an+2n是等比数列,首项为2,公比为2;(II)解:由(I)可得an=22n12n=2n2nbn=ansin=(2n+2n), =(1)n,bn=(1)n+1(2n+2n)设数列bn的前n项和为Tn当n=2k(kN*)时,T2k=(222+2324+22k122k)+2(12+34+2k12k)=2k=n当n=2k1时,T2k1=2k(22k4k)=+n+1+2n+1=+n+1(III)证明:Cn=,当n2时,cn数列Cn的前n项和为Pn=,当n=1时,c1=成立综上可得:nN*,【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、“放缩法”、三角函数的诱导公式、递推式的应用,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于难题23【答案】 【解析】解:(I)a,b,c分别是ABC内角A,B,C的对边,且csinA=acosC,sinCsinA=sinAcosC,sinCsinAsinAcosC=0,sinC=cosC,tanC=,由三角形内角的范围可得C=;()c=2a,b=2,C=,由余弦定理可得c2=a2+b22abcosC,4a2=a2+124a,解得a=1+,或a=1(舍去)ABC的面积S=absinC=24【答案】(1);

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论