龙江县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第1页
龙江县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第2页
龙江县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第3页
龙江县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第4页
龙江县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

龙江县高中2018-2019学年上学期高三数学期末模拟试卷含答案班级_ 座号_ 姓名_ 分数_一、选择题1 已知集合A=x|1x3,B=x|0xa,若AB,则实数a的范围是( )A3,+)B(3,+)C,3D,3)2 已知,若不等式对一切恒成立,则的最大值为( )A B C D 3 双曲线的渐近线方程是( )ABCD4 函数y=f(x)是函数y=f(x)的导函数,且函数y=f(x)在点p(x0,f(x0)处的切线为l:y=g(x)=f(x0)(xx0)+f(x0),F(x)=f(x)g(x),如果函数y=f(x)在区间a,b上的图象如图所示,且ax0b,那么( )AF(x0)=0,x=x0是F(x)的极大值点BF(x0)=0,x=x0是F(x)的极小值点CF(x0)0,x=x0不是F(x)极值点DF(x0)0,x=x0是F(x)极值点5 某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量(单位:毫克/升)与时间(单位:小时)间的关系为(,均为正常数)如果前5个小时消除了的污染物,为了消除的污染物,则需要( )小时.A. B.C. D. 【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想. 6 把函数y=cos(2x+)(|)的图象向左平移个单位,得到函数y=f(x)的图象关于直线x=对称,则的值为( )ABCD7 若命题“p或q”为真,“非p”为真,则( )Ap真q真Bp假q真Cp真q假Dp假q假8 直线的倾斜角是( )ABCD9 复数的值是( )A B C D【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题10设集合M=x|x1,N=x|xk,若MN,则k的取值范围是( )A(,1B1,+)C(1,+)D(,1)11函数存在与直线平行的切线,则实数的取值范围是( )A. B. C. D. 【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力12从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )ABCD二、填空题13i是虚数单位,若复数(12i)(a+i)是纯虚数,则实数a的值为14如果椭圆+=1弦被点A(1,1)平分,那么这条弦所在的直线方程是15已知=1bi,其中a,b是实数,i是虚数单位,则|abi|=16已知平面上两点M(5,0)和N(5,0),若直线上存在点P使|PM|PN|=6,则称该直线为“单曲型直线”,下列直线中:y=x+1 y=2 y=x y=2x+1是“单曲型直线”的是17已知正整数的3次幂有如下分解规律:;若的分解中最小的数为,则的值为 .【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度中等.18自圆:外一点引该圆的一条切线,切点为,切线的长度等于点到原点的长,则的最小值为( )AB3C4D【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想三、解答题19已知函数f(x)=4sinxcosx5sin2xcos2x+3()当x0,时,求函数f(x)的值域;()若ABC的内角A,B,C的对边分别为a,b,c,且满足=, =2+2cos(A+C),求f(B)的值20(本小题满分10分)选修:几何证明选讲 如图所示,已知与相切,为切点,过点的割线交圆于两点,弦,相 交于点,为上一点,且()求证:;()若,求的长21(本小题满分10分)如图O经过ABC的点B,C与AB交于E,与AC交于F,且AEAF.(1)求证EFBC;(2)过E作O的切线交AC于D,若B60,EBEF2,求ED的长22【泰州中学2018届高三10月月考】已知函数.(1)若曲线与直线相切,求实数的值;(2)记,求在上的最大值;(3)当时,试比较与的大小.23设函数f(x)=1+(1+a)xx2x3,其中a0()讨论f(x)在其定义域上的单调性;()当x时,求f(x)取得最大值和最小值时的x的值24设函数f(x)=lnxax+1()当a=1时,求曲线f(x)在x=1处的切线方程;()当a=时,求函数f(x)的单调区间;()在()的条件下,设函数g(x)=x22bx,若对于x11,2,x20,1,使f(x1)g(x2)成立,求实数b的取值范围龙江县高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1 【答案】B【解析】解:集合A=x|1x3,B=x|0xa,若AB,则a3,故选:B【点评】本题考查了集合的包含关系,考查不等式问题,是一道基础题2 【答案】C 【解析】解析:本题考查用图象法解决与函数有关的不等式恒成立问题当(如图1)、(如图2)时,不等式不可能恒成立;当时,如图3,直线与函数图象相切时,切点横坐标为,函数图象经过点时,观察图象可得,选C3 【答案】B【解析】解:双曲线标准方程为,其渐近线方程是=0,整理得y=x故选:B【点评】本题考查双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程属于基础题4 【答案】 B【解析】解:F(x)=f(x)g(x)=f(x)f(x0)(xx0)f(x0),F(x)=f(x)f(x0)F(x0)=0,又由ax0b,得出当axx0时,f(x)f(x0),F(x)0,当x0xb时,f(x)f(x0),F(x)0,x=x0是F(x)的极小值点故选B【点评】本题主要考查函数的极值与其导函数的关系,即当函数取到极值时导函数一定等于0,反之当导函数等于0时还要判断原函数的单调性才能确定是否有极值5 【答案】15 【解析】6 【答案】B【解析】解:把函数y=cos(2x+)(|)的图象向左平移个单位,得到函数y=f(x)=cos2(x+)+=cos(2x+)的图象关于直线x=对称,则2+=k,求得=k,kZ,故=,故选:B7 【答案】B【解析】解:若命题“p或q”为真,则p真或q真,若“非p”为真,则p为假,p假q真,故选:B【点评】本题考查了复合命题的真假的判断,是一道基础题8 【答案】A【解析】解:设倾斜角为,直线的斜率为,tan=,0180,=30故选A【点评】本题考查了直线的倾斜角与斜率之间的关系,属于基础题,应当掌握9 【答案】【解析】10【答案】B【解析】解:M=x|x1,N=x|xk,若MN,则k1k的取值范围是1,+)故选:B【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题11【答案】D【解析】因为,直线的的斜率为,由题意知方程()有解,因为,所以,故选D12【答案】A【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,故取出的3个数可作为三角形的三边边长的概率P=故选:A【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件二、填空题13【答案】2 【解析】解:由(12i)(a+i)=(a+2)+(12a)i为纯虚数,得,解得:a=2故答案为:214【答案】x+4y5=0 【解析】解:设这条弦与椭圆+=1交于P(x1,y1),Q(x2,y2),由中点坐标公式知x1+x2=2,y1+y2=2,把P(x1,y1),Q(x2,y2)代入x2+4y2=36,得,得2(x1x2)+8(y1y2)=0,k=,这条弦所在的直线的方程y1=(x1),即为x+4y5=0,由(1,1)在椭圆内,则所求直线方程为x+4y5=0故答案为:x+4y5=0【点评】本题考查椭圆的方程的运用,运用点差法和中点坐标和直线的斜率公式是解题的关键15【答案】 【解析】解:=1bi,a=(1+i)(1bi)=1+b+(1b)i,解得b=1,a=2|abi|=|2i|=故答案为:【点评】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题16【答案】 【解析】解:|PM|PN|=6点P在以M、N为焦点的双曲线的右支上,即,(x0)对于,联立,消y得7x218x153=0,=(18)247(153)0,y=x+1是“单曲型直线”对于,联立,消y得x2=,y=2是“单曲型直线”对于,联立,整理得144=0,不成立不是“单曲型直线”对于,联立,消y得20x2+36x+153=0,=3624201530y=2x+1不是“单曲型直线”故符合题意的有故答案为:【点评】本题考查“单曲型直线”的判断,是中档题,解题时要认真审题,注意双曲线定义的合理运用17【答案】10【解析】的分解规律恰好为数列1,3,5,7,9,中若干连续项之和,为连续两项和,为接下来三项和,故的首个数为.的分解中最小的数为91,解得.18【答案】D【解析】三、解答题19【答案】 【解析】解:()f(x)=4sinxcosx5sin2xcos2x+3=2sin2x+3=2sin2x+2cos2x=4sin(2x+)x0,2x+,f(x)2,4()由条件得 sin(2A+C)=2sinA+2sinAcos(A+C),sinAcos(A+C)+cosAsin(A+C)=2sinA+2sinAcos(A+C),化简得 sinC=2sinA,由正弦定理得:c=2a,又b=,由余弦定理得:a2=b2+c22bccosA=3a2+4a24a2cosA,解得:cosA=,故解得:A=,B=,C=,f(B)=f()=4sin=2【点评】本题考查了平方关系、倍角公式、两角和差的正弦公式及其单调性、正弦定理、余弦定理,考查了推理能力和计算能力,属于中档题20【答案】【解析】【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力21【答案】【解析】解:(1)证明:AEAF,AEFAFE.又B,C,F,E四点共圆,ABCAFE,AEFACB,又AEFAFE,EFBC. (2)由(1)与B60知ABC为正三角形,又EBEF2,AFFC2,设DEx,DFy,则AD2y,在AED中,由余弦定理得DE2AE2AD22ADAEcos A.即x2(2y)2222(2y)2,x2y242y,由切割线定理得DE2DFDC,即x2y(y2),x2y22y,由联解得y1,x,ED.22【答案】(1);(2)当时,;当时,;(3).【解析】试题分析:(1)研究函数的切线主要是利用切点作为突破口求解;(2)通过讨论函数在定义域内的单调性确定最值,要注意对字母m的讨论;(3)比较两个函数的大小主要是转化为判断两个函数的差函数的符号,然后转化为研究差函数的单调性研究其最值试题解析:(1)设曲线与相切于点,由,知,解得,又可求得点为,所以代入,得.(2)因为,所以.当,即时,此时在上单调递增,所以;当即,当时,单调递减,当时,单调递增,.(i)当,即时,;(ii)当,即时,;当,即时,此时在上单调递减,所以.综上,当时,;当时,.(3)当时,当时,显然;当时,记函数,则,可知在上单调递增,又由知,在上有唯一实根,且,则,即(*),当时,单调递减;当时,单调递增,所以,结合(*)式,知,所以,则,即,所以.综上,.试题点睛:本题综合考查了利用导数研究函数的单调性、最值基本思路,当比较两个函数大小的时候,就转化为两个函数的差的单调性,进一步确定最值确定符号比较大小23【答案】 【解析】解:()f(x)的定义域为(,+),f(x)=1+a2x3x2,由f(x)=0,得x1=,x2=,x1x2,由f(x)0得x,x;由f(x)0得x;故f(x)在(,)和(,+)单调递减,在(,)上单调递增;()a0,x10,x20,x,当时,即a4当a4时,x21,由()知,f(x)在上单调递增,f(x)在x=0和x=1处分别取得最小值和最大值当0a4时,x21,由()知,f(x)在单调递增,在上单调递减,因此f(x)在x=x2=处取得最大值,又f(0)=1,f(1)=a,当0a1时,f(x)在x=1处取得最小值;当a=1时,f(x)在x=0和x=1处取得最小值;当1a4时,f(x)在x=0处取得最小值24【答案】 【解析】解:函数f(x)的定义域为(0,+),(2分)()当a=1时,f(x)=lnxx1,f(1)=2,f(1)=0,f(x)在x=1处的切线方程为y=2(5分)()=(6分)令f(x)0,可得0x1,或x2;令f(x)0,可得1x2故当时,函数f(x)的单调递增区间为(1,2);单调递减区间为(0,1),(2,+).()当时,由()可知函数f(x)在(1,2)上为增函数,函数f(x)在1,2上的最小值为f(1)=(9

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论