红花岗区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
红花岗区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
红花岗区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
红花岗区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
红花岗区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

红花岗区高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知抛物线:的焦点为,是抛物线的准线上的一点,且的纵坐标为正数,是直线与抛物线的一个交点,若,则直线的方程为( )A B C D2 设m,n是正整数,多项式(12x)m+(15x)n中含x一次项的系数为16,则含x2项的系数是( )A13B6C79D373 已知集合P=x|1xb,bN,Q=x|x23x0,xZ,若PQ,则b的最小值等于( )A0B1C2D34 已知集合,则( ) A B C D【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力5 如图,在正六边形ABCDEF中,点O为其中心,则下列判断错误的是( )A =BCD6 已知函数关于直线对称 , 且,则的最小值为 A、 B、C、D、7 已知双曲线,分别在其左、右焦点,点为双曲线的右支上的一点,圆为三角形的内切圆,所在直线与轴的交点坐标为,与双曲线的一条渐近线平行且距离为,则双曲线的离心率是( )A B2 C D8 已知全集U=R,集合M=x|2x12和N=x|x=2k1,k=1,2,的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有( )A3个B2个C1个D无穷多个9 已知集合,则下列关系式错误的是( )A B C D10将函数y=cosx的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函数图象的一条对称轴方程是( )Ax=BCD11若方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是( )A(0,+)B(0,2)C(1,+)D(0,1)12将函数f(x)=3sin(2x+)()的图象向右平移(0)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P(0,),则的值不可能是( )ABCD二、填空题13如图,正方形的边长为1,它是水平放置的一个平面图形的直观图,则原图的周长为 111114若圆与双曲线C:的渐近线相切,则_;双曲线C的渐近线方程是_15已知x,y满足条件,则函数z=2x+y的最大值是16球O的球面上有四点S,A,B,C,其中O,A,B,C四点共面,ABC是边长为2的正三角形,平面SAB平面ABC,则棱锥SABC的体积的最大值为17如图所示22方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复若填入A方格的数字大于B方格的数字,则不同的填法共有种(用数字作答)ABCD18函数f(x)=2ax+13(a0,且a1)的图象经过的定点坐标是三、解答题19已知条件,条件,且是的一个必要不充分条件,求实数的取值范围20求同时满足下列两个条件的所有复数z:z+是实数,且1z+6;z的实部和虚部都是整数21函数f(x)=sin(x+)(0,|)的部分图象如图所示()求函数f(x)的解析式()在ABC中,角A,B,C所对的边分别是a,b,c,其中ac,f(A)=,且a=,b=,求ABC的面积22已知圆C经过点A(2,0),B(0,2),且圆心在直线y=x上,且,又直线l:y=kx+1与圆C相交于P、Q两点()求圆C的方程;()若,求实数k的值;()过点(0,1)作直线l1与l垂直,且直线l1与圆C交于M、N两点,求四边形PMQN面积的最大值23设等差数列an的公差为d,前n项和为Sn,等比数列bn的公比为q,已知b1=a1,b2=2,q=d,S10=100(1)求数列an,bn的通项公式(2)当d1时,记cn=,求数列cn的前n项和Tn24若函数f(x)=sinxcosx+sin2x(0)的图象与直线y=m(m为常数)相切,并且切点的横坐标依次构成公差为的等差数列()求及m的值;()求函数y=f(x)在x0,2上所有零点的和红花岗区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】 考点:抛物线的定义及性质【易错点睛】抛物线问题的三个注意事项:(1)求抛物线的标准方程时一般要用待定系数法求p的值,但首先要判断抛物线是否为标准方程,若是标准方程,则要由焦点位置(或开口方向)判断是哪一种标准方程(2)注意应用抛物线定义中的距离相等的转化来解决问题(3)直线与抛物线有一个交点,并不表明直线与抛物线相切,因为当直线与对称轴平行(或重合)时,直线与抛物线也只有一个交点2 【答案】 D【解析】二项式系数的性质【专题】二项式定理【分析】由含x一次项的系数为16利用二项展开式的通项公式求得2m+5n=16 ,再根据m、n为正整数,可得m=3、n=2,从而求得含x2项的系数【解答】解:由于多项式(12x)m+(15x)n中含x一次项的系数为(2)+(5)=16,可得2m+5n=16 再根据m、n为正整数,可得m=3、n=2,故含x2项的系数是(2)2+(5)2=37,故选:D【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题3 【答案】C【解析】解:集合P=x|1xb,bN,Q=x|x23x0,xZ=1,2,PQ,可得b的最小值为:2故选:C【点评】本题考查集合的基本运算,交集的意义,是基础题4 【答案】D【解析】由已知得,故,故选D5 【答案】D【解析】解:由图可知,但不共线,故,故选D【点评】本题考查平行向量与共线向量、相等向量的意义,属基础题6 【答案】D【解析】:7 【答案】C【解析】试题分析:由题意知到直线的距离为,那么,得,则为等轴双曲线,离心率为.故本题答案选C. 1考点:双曲线的标准方程与几何性质【方法点睛】本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造的关系,处理方法与椭圆相同,但需要注意双曲线中与椭圆中的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出的值,可得;(2)建立的齐次关系式,将用表示,令两边同除以或化为的关系式,解方程或者不等式求值或取值范围.8 【答案】B【解析】解:根据题意,分析可得阴影部分所示的集合为MN,又由M=x|2x12得1x3,即M=x|1x3,在此范围内的奇数有1和3所以集合MN=1,3共有2个元素,故选B9 【答案】A 【解析】试题分析:因为 ,而,即B、C正确,又因为且,所以,即D正确,故选A. 1考点:集合与元素的关系.10【答案】B【解析】解:将函数y=cosx的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx,再向右平移个单位得到y=cos(x),由(x)=k,得x=2k,即+2k,kZ,当k=0时,即函数的一条对称轴为,故选:B【点评】本题主要考查三角函数的对称轴的求解,利用三角函数的图象关系求出函数的解析式是解决本题的关键11【答案】D【解析】解:方程x2+ky2=2,即表示焦点在y轴上的椭圆故0k1故选D【点评】本题主要考查了椭圆的定义,属基础题12【答案】C【解析】函数f(x)=sin(2x+)()向右平移个单位,得到g(x)=sin(2x+2),因为两个函数都经过P(0,),所以sin=,又因为,所以=,所以g(x)=sin(2x+2),sin(2)=,所以2=2k+,kZ,此时=k,kZ,或2=2k+,kZ,此时=k,kZ,故选:C【点评】本题考查的知识点是函数y=Asin(x+)的图象变换,三角函数求值,难度中档二、填空题13【答案】【解析】考点:平面图形的直观图14【答案】,【解析】【知识点】圆的标准方程与一般方程双曲线【试题解析】双曲线的渐近线方程为:圆的圆心为(2,0),半径为1因为相切,所以所以双曲线C的渐近线方程是:故答案为:,15【答案】4 【解析】解:由约束条件作出可行域如图,化目标函数z=2x+y为y=2x+z,由图可知,当直线y=2x+z过点A(2,0)时,直线y=2x+z在y轴上的截距最大,即z最大,此时z=2(2)+0=4故答案为:4【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题16【答案】 【解析】解:由题意画出几何体的图形如图由于面SAB面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S在“最高点”,也就是说H为AB中点时,SH最大,棱锥SABC的体积最大ABC是边长为2的正三角形,所以球的半径r=OC=CH=在RTSHO中,OH=OC=OSHSO=30,求得SH=OScos30=1,体积V=Sh=221=故答案是【点评】本题考查锥体体积计算,根据几何体的结构特征确定出S位置是关键考查空间想象能力、计算能力17【答案】27 【解析】解:若A方格填3,则排法有232=18种,若A方格填2,则排法有132=9种,根据分类计数原理,所以不同的填法有18+9=27种故答案为:27【点评】本题考查了分类计数原理,如何分类是关键,属于基础题18【答案】(1,1) 【解析】解:由指数幂的性质可知,令x+1=0得x=1,此时f(1)=23=1,即函数f(x)的图象经过的定点坐标是(1,1),故答案为:(1,1)三、解答题19【答案】【解析】试题分析:先化简条件得,分三种情况化简条件,由是的一个必要不充分条件,可分三种情况列不等组,分别求解后求并集即可求得符合题意的实数的取值范围.试题解析:由得,由得,当时,;当时,;当时, 由题意得,是的一个必要不充分条件,当时,满足条件;当时,得,当时,得 综上,考点:1、充分条件与必要条件;2、子集的性质及不等式的解法.【方法点睛】本题主要考查子集的性质及不等式的解法、充分条件与必要条件,属于中档题,判断是的什么条件,需要从两方面分析:一是由条件能否推得条件,二是由条件能否推得条件.对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题本题的解答是根据集合思想解不等式求解的.20【答案】 【解析】解:设z+=t,则 z2tz+10=01t6,=t2400,解方程得 z=i又z的实部和虚部都是整数,t=2或t=6,故满足条件的复数共4个:z=13i 或 z=3i21【答案】 【解析】解:()由图象可知,T=4()=,=2,又x=时,2+=+2k,得=2k,(kZ)又|,=,f(x)=sin(2x)6分()由f(A)=,可得sin(2A)=,ac,A为锐角,2A(,),2A=,得A=,由余弦定理可得:a2=b2+c22bccosA,可得:7=3+c22,即:c23c4=0,c0,解得c=4ABC的面积S=bcsinA=12分【点评】本题主要考查了余弦定理,三角形面积公式,由y=Asin(x+)的部分图象确定其解析式等知识的应用,属于基本知识的考查22【答案】【解析】【分析】(I)设圆心C(a,a),半径为r,利用|AC|=|BC|=r,建立方程,从而可求圆C的方程;(II)方法一:利用向量的数量积公式,求得POQ=120,计算圆心到直线l:kxy+1=0的距离,即可求得实数k的值;方法二:设P(x1,y1),Q(x2,y2),直线方程代入圆的方程,利用韦达定理及=x1x2+y1y2=,即可求得k的值;(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,求得,根据垂径定理和勾股定理得到,再利用基本不等式,可求四边形PMQN面积的最大值;方法二:当直线l的斜率k=0时,则l1的斜率不存在,可求面积S;当直线l的斜率k0时,设,则,代入消元得(1+k2)x2+2kx3=0,求得|PQ|,|MN|,再利用基本不等式,可求四边形PMQN面积的最大值【解答】解:(I)设圆心C(a,a),半径为r因为圆经过点A(2,0),B(0,2),所以|AC|=|BC|=r,所以解得a=0,r=2,(2分)所以圆C的方程是x2+y2=4(4分)(II)方法一:因为,(6分)所以,POQ=120,(7分)所以圆心到直线l:kxy+1=0的距离d=1,(8分)又,所以k=0(9分)方法二:设P(x1,y1),Q(x2,y2),因为,代入消元得(1+k2)x2+2kx3=0(6分)由题意得:(7分)因为=x1x2+y1y2=2,又,所以x1x2+y1y2=,(8分)化简得:5k23+3(k2+1)=0,所以k2=0,即k=0(9分)(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,四边形PMQN的面积为S因为直线l,l1都经过点(0,1),且ll1,根据勾股定理,有,(10分)又根据垂径定理和勾股定理得到,(11分)而,即(13分)当且仅当d1=d时,等号成立,所以S的最大值为7(14分)方法二:设四边形PMQN的面积为S当直线l的斜率k=0时,则l1的斜率不存在,此时(10分)当直线l的斜率k0时,设则,代入消元得(1+k2)x2+2kx3=0所以同理得到(11分)=(12分)因为,所以,(13分)当且仅当k=1时,等号成立,所以S的最大值为7(14分)23【答案】 【解析】解:(1)设a1=a,由题意可得,解得,或,当时,an=2n1,bn=2n1;当时,an=(2n+79),bn=9;(2)当d1时,由(1)知an=2n1,bn=2n1,cn=,Tn=1+3+5+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论