高中数学第二章推理与证明2.2.2反证法说课稿新人教A版.docx_第1页
高中数学第二章推理与证明2.2.2反证法说课稿新人教A版.docx_第2页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.2.2 反证法一、教学要求:结合已经学过的数学实例,了解间接证明的一种基本方法反证法;了解反证法的思考过程、特点.二、教学重点:会用反证法证明问题;了解反证法的思考过程.教学难点:根据问题的特点,选择适当的证明方法.三、课时安排:一课时 四、教学过程:一、复习准备:1. 讨论:三枚正面朝上的硬币,每次翻转2枚,你能使三枚反面都朝上吗?(原因:偶次)2. 提出问题: 平面几何中,我们知道这样一个命题:“过在同一直线上的三点A、B、C不能作圆”. 讨论如何证明这个命题?3. 给出证法:先假设可以作一个O过A、B、C三点, 则O在AB的中垂线l上,O又在BC的中垂线m上, 即O是l与m的交点。 但 A、B、C共线,lm(矛盾) 过在同一直线上的三点A、B、C不能作圆.二、讲授新课:1. 教学反证法概念及步骤: 练习:仿照以上方法,证明:如果ab0,那么 提出反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.证明基本步骤:假设原命题的结论不成立 从假设出发,经推理论证得到矛盾 矛盾的原因是假设不成立,从而原命题的结论成立应用关键:在正确的推理下得出矛盾(与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等).方法实质:反证法是利用互为逆否的命题具有等价性来进行证明的,即由一个命题与其逆否命题同真假,通过证明一个命题的逆否命题的正确,从而肯定原命题真实. 注:结合准备题分析以上知识.2. 教学例题: 出示例1:求证圆的两条不是直径的相交弦不能互相平分. 分析:如何否定结论? 如何从假设出发进行推理? 得到怎样的矛盾?与教材不同的证法:反设AB、CD被P平分,P不是圆心,连结OP,则由垂径定理:OPAB,OPCD,则过P有两条直线与OP垂直(矛盾),不被P平分. 出示例2:求证是无理数. ( 同上分析 板演证明,提示:有理数可表示为)证:假设是有理数,则不妨设(m,n为互质正整数),从而:,可见m是3的倍数.设m=3p(p是正整数),则 ,可见n 也是3的倍数.这样,m, n就不是互质的正整数(矛盾). 不可能,是无理数. 练习:如果为无理数,求证是无理数.提示:假设为有理数,则可表示为(为整数),即. 由,则也是有理数,这与已知矛盾. 是无理数.3. 小结:反证法是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确. 注意证明步骤和适应范围(“至多”、“至少”、“均是”、“不都”、“任何

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论