已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三原县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 487被7除的余数为a(0a7),则展开式中x3的系数为( )A4320B4320C20D202 若复数(2+ai)2(aR)是实数(i是虚数单位),则实数a的值为( )A2B2C0D23 某几何体的三视图如图所示,则该几何体为( )A四棱柱 B四棱锥 C三棱台 D三棱柱 4 设P是椭圆+=1上一点,F1、F2是椭圆的焦点,若|PF1|等于4,则|PF2|等于( )A22B21C20D135 在平面直角坐标系中,若不等式组(为常数)表示的区域面积等于, 则的值为()A B C D6 若椭圆和圆为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e的取值范围是( )ABCD7 设抛物线C:y2=2px(p0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( )Ay2=4x或y2=8xBy2=2x或y2=8xCy2=4x或y2=16xDy2=2x或y2=16x8 已知e是自然对数的底数,函数f(x)=ex+x2的零点为a,函数g(x)=lnx+x2的零点为b,则下列不等式中成立的是( )Aa1bBab1C1abDb1a9 如果函数f(x)的图象关于原点对称,在区间上是减函数,且最小值为3,那么f(x)在区间上是( )A增函数且最小值为3B增函数且最大值为3C减函数且最小值为3D减函数且最大值为3 10已知函数(),若数列满足,数列的前项和为,则( )A. B. C. D.【命题意图】本题考查数列求和等基础知识,意在考查分类讨论的数学思想与运算求解能力.11若曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,则a+b=( )A1B2C3D412复数z=(其中i是虚数单位),则z的共轭复数=( )AiBiC +iD +i二、填空题13设O为坐标原点,抛物线C:y2=2px(p0)的准线为l,焦点为F,过F斜率为的直线与抛物线C相交于A,B两点,直线AO与l相交于D,若|AF|BF|,则=14已知椭圆+=1(ab0)上一点A关于原点的对称点为B,F为其左焦点,若AFBF,设ABF=,且,则该椭圆离心率e的取值范围为15设满足条件,若有最小值,则的取值范围为 16x为实数,x表示不超过x的最大整数,则函数f(x)=xx的最小正周期是17直线l过原点且平分平行四边形ABCD的面积,若平行四边形的两个顶点为B(1,4),D(5,0),则直线l的方程为18已知函数.表示中的最小值,若函数恰有三个零点,则实数的取值范围是 三、解答题19长方体ABCDA1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点(1)求证:BD1平面A1DE;(2)求证:A1D平面ABD120(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)(不等式选做题)设,且,则的最小值为(几何证明选做题)如图,中,以为直径的半圆分别交于点,若,则21(本小题满分10分)选修4-5:不等式选讲已知函数,.(1)解不等式;(2)对任意的实数,不等式恒成立,求实数的最小值.11122设f(x)=x2ax+2当x,使得关于x的方程f(x)tf(2a)=0有三个不相等的实数根,求实数t的取值范围 23已知梯形ABCD中,ABCD,B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周得到如图所示的几何体(1)求几何体的表面积;(2)点M时几何体的表面上的动点,当四面体MABD的体积为,试判断M点的轨迹是否为2个菱形24【泰州中学2018届高三10月月考】已知函数.(1)若曲线与直线相切,求实数的值;(2)记,求在上的最大值;(3)当时,试比较与的大小.三原县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B 解析:解:487=(491)7=+1,487被7除的余数为a(0a7),a=6,展开式的通项为Tr+1=,令63r=3,可得r=3,展开式中x3的系数为=4320,故选:B.2 【答案】C【解析】解:复数(2+ai)2=4a2+4ai是实数,4a=0,解得a=0故选:C【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题3 【答案】【解析】试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为3和4,直角腰为1,棱柱的侧棱长为1,故选A.考点:三视图【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹.4 【答案】A【解析】解:P是椭圆+=1上一点,F1、F2是椭圆的焦点,|PF1|等于4,|PF2|=213|PF1|=264=22故选:A【点评】本题考查椭圆的简单性质的应用,是基础题,解题时要熟练掌握椭圆定义的应用5 【答案】B【解析】【知识点】线性规划【试题解析】作可行域:由题知:所以故答案为:B6 【答案】 A【解析】解:椭圆和圆为椭圆的半焦距)的中心都在原点,且它们有四个交点,圆的半径,由,得2cb,再平方,4c2b2,在椭圆中,a2=b2+c25c2,;由,得b+2c2a,再平方,b2+4c2+4bc4a2,3c2+4bc3a2,4bc3b2,4c3b,16c29b2,16c29a29c2,9a225c2,综上所述,故选A7 【答案】 C【解析】解:抛物线C方程为y2=2px(p0),焦点F坐标为(,0),可得|OF|=,以MF为直径的圆过点(0,2),设A(0,2),可得AFAM,RtAOF中,|AF|=,sinOAF=,根据抛物线的定义,得直线AO切以MF为直径的圆于A点,OAF=AMF,可得RtAMF中,sinAMF=,|MF|=5,|AF|=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x故选:C方法二:抛物线C方程为y2=2px(p0),焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5,4),代入抛物线方程得p210p+16=0,所以p=2或p=8所以抛物线C的方程为y2=4x或y2=16x故答案C【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题8 【答案】A【解析】解:由f(x)=ex+x2=0得ex=2x,由g(x)=lnx+x2=0得lnx=2x,作出计算y=ex,y=lnx,y=2x的图象如图:函数f(x)=ex+x2的零点为a,函数g(x)=lnx+x2的零点为b,y=ex与y=2x的交点的横坐标为a,y=lnx与y=2x交点的横坐标为b,由图象知a1b,故选:A【点评】本题主要考查函数与方程的应用,利用函数转化为两个图象的交点问题,结合数形结合是解决本题的关键9 【答案】D【解析】解:由奇函数的性质可知,若奇函数f(x)在区间上是减函数,且最小值3,则那么f(x)在区间上为减函数,且有最大值为3,故选:D【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,比较基础10【答案】A. 【解析】11【答案】A【解析】解:f(x)=acosx,g(x)=x2+bx+1,f(x)=asinx,g(x)=2x+b,曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,f(0)=a=g(0)=1,且f(0)=0=g(0)=b,即a=1,b=0a+b=1故选:A【点评】本题考查利用导数研究曲线上某点的切线方程,函数在某点处的导数,就是曲线上过该点的切线的斜率,是中档题12【答案】C【解析】解:z=,=故选:C【点评】本题考查了复数代数形式的乘除运算,是基础题二、填空题13【答案】 【解析】解:O为坐标原点,抛物线C:y2=2px(p0)的准线为l,焦点为F,过F斜率为的直线与抛物线C相交于A,B两点,直线AO与l相交于D,直线AB的方程为y=(x),l的方程为x=,联立,解得A(, P),B(,)直线OA的方程为:y=,联立,解得D(,)|BD|=,|OF|=, =故答案为:【点评】本题考查两条件线段的比值的求法,是中档题,解题时要认真审题,要熟练掌握抛物线的简单性质14【答案】,1 【解析】解:设点A(acos,bsin),则B(acos,bsin)(0);F(c,0);AFBF,=0,即(cacos,bsin)(c+acos,bsin)=0,故c2a2cos2b2sin2=0,cos2=2,故cos=,而|AF|=,|AB|=2c,而sin=,sin,+,即,解得,e1;故答案为:,1【点评】本题考查了圆锥曲线与直线的位置关系的应用及平面向量的应用,同时考查了三角函数的应用15【答案】【解析】解析:不等式表示的平面区域如图所示,由得,当时,平移直线可知,既没有最大值,也没有最小值;当时,平移直线可知,在点A处取得最小值;当时,平移直线可知,既没有最大值,也没有最小值;当时,平移直线可知,在点A处取得最大值,综上所述,16【答案】1,)(9,25 【解析】解:集合,得 (ax5)(x2a)0,当a=0时,显然不成立,当a0时,原不等式可化为,若时,只需满足,解得;若,只需满足,解得9a25,当a0时,不符合条件,综上,故答案为1,)(9,25【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题17【答案】 【解析】解:直线l过原点且平分平行四边形ABCD的面积,则直线过BD的中点(3,2),故斜率为=,由斜截式可得直线l的方程为,故答案为【点评】本题考查直线的斜率公式,直线方程的斜截式18【答案】【解析】试题分析:,因为,所以要使恰有三个零点,须满足,解得考点:函数零点【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.三、解答题19【答案】 【解析】证明:(1)连结A1D,AD1,A1DAD1=O,连结OE,长方体ABCDA1B1C1D1中,ADD1A1是矩形,O是AD1的中点,OEBD1,OEBD1,OE平面ABD1,BD1平面ABD1,BD1平面A1DE(2)长方体ABCDA1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点,ADD1A1是正方形,A1DAD1,长方体ABCDA1B1C1D1中,AB平面ADD1A1,A1DAB,又ABAD1=A,A1D平面ABD120【答案】【解析】AB21【答案】(1)或;(2).【解析】试题解析:(1)由题意不等式可化为,当时,解得,即;当时,解得,即;当时,解得,即 (4分)综上所述,不等式的解集为或. (5分)(2)由不等式可得,分离参数,得,故实数的最小值是. (10分)考点:绝对值三角不等式;绝对值不等式的解法122【答案】【解析】设f(x)=x2ax+2当x,则t=,对称轴m=(0,且开口向下;时,t取得最小值,此时x=9税率t的最小值为【点评】此题是个指数函数的综合题,但在求解的过程中也用到了构造函数的思想及二次函数在定义域内求最值的知识考查的知识全面而到位!23【答案】 【解析】解:(1)根据题意,得;该旋转体的下半部分是一个圆锥,上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,其表面积为S=422=8,或S=42+(422)+2=8;(2)由已知SABD=2sin135=1,因而要使四面体MABD的体积为,只要M点到平面ABCD的距离为1,因为在空间中有两个平面到平面ABCD的距离为1,它们与几何体的表面的交线构成2个曲边四边形,不是2个菱形【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目24【答案】(1);(2)当时,;当时,;(3).【解析】试题分析:(1)研究函数的切线主要是利用切点作为突破口求解;(2)通过讨论函数在定义域内的单调性确定最值,要注意对字母m的讨论;(3)比较两个函数的大小主要是转化为判断两个函数的差函数的符号,然后转化为研究差函数的单调性研究其最值试题解析:(1)设曲线与相切于点,由,知,解得,又可求得点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 食品与安全课件
- 浙江网盛生意宝股份有限公司偿债能力和盈利能力分析综合结论及建议
- 安全保密课件
- 家庭教育亲子互动游戏题库及答案解析
- 基于ARM的嵌入式系统编程测试题及解答手册全集
- 就业指导课程知识点总结与练习题集答案
- 懒癌测试题答案详解如何克服懒惰心理
- 2024年国家电工进网作业许可证考试复习题库及答案(共250题)
- 开播前bi备知识模拟题集
- 德勤春招笔试内容分析及备考技巧
- 驾驶员冬季安全培训
- 腰突症康复治疗
- 四川省射洪市射洪中学校2024-2025学年七年级上学期期中考试地理试题
- 地形图测绘报告
- DL-T499-2001农村低压电力技术规程
- 能源动力专业大学生职业生涯规划与行业发展
- 2024版人教版英语初一上单词默写单
- 2024年广东普通专升本《公共英语》完整版真题
- 材料采购技术服务方案
- 《养老护理员》-课件:协助老年人穿脱简易矫形器
- 国外文化研究现状分析报告
评论
0/150
提交评论