瑞昌市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
瑞昌市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
瑞昌市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
瑞昌市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
瑞昌市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

瑞昌市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若函数的定义域是,则函数的定义域是( )A B C D2 设Sn为等差数列an的前n项和,已知在Sn中有S170,S180,那么Sn中最小的是( )AS10BS9CS8DS73 某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则其侧视图的面积是( )ABC1D4 函数y=2x2e|x|在2,2的图象大致为( )ABCD5 已知a,b都是实数,那么“a2b2”是“ab”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件6 奇函数满足,且在上是单调递减,则的解集为( )ABC D7 下列命题中正确的是( )A复数a+bi与c+di相等的充要条件是a=c且b=dB任何复数都不能比较大小C若=,则z1=z2D若|z1|=|z2|,则z1=z2或z1=8 已知圆C1:x2+y2=4和圆C2:x2+y2+4x4y+4=0关于直线l对称,则直线l的方程为()Ax+y=0Bx+y=2Cxy=2Dxy=29 在ABC中,内角A,B,C的对边分别是a,b,c,若a2b2=bc,sinC=2sinB,则A=( )A30B60C120D15010已知函数,则( )A B C1 D【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力11已知函数f(x)是定义在R上的奇函数,当x0时,.若,f(x-1)f(x),则实数a的取值范围为ABCD12若变量满足约束条件,则目标函数的最小值为( )A-5 B-4 C.-2 D3二、填空题13已知是函数两个相邻的两个极值点,且在处的导数,则_14【泰州中学2018届高三10月月考】设函数是奇函数的导函数,当时,则使得成立的的取值范围是_15意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,其中从第三个数起,每一个数都等于他前面两个数的和该数列是一个非常美丽、和谐的数列,有很多奇妙的属性比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887人们称该数列an为“斐波那契数列”若把该数列an的每一项除以4所得的余数按相对应的顺序组成新数列bn,在数列bn中第2016项的值是16已知定义在R上的奇函数满足,且时,则的值为 17设函数,若恰有2个零点,则实数的取值范围是 18已知线性回归方程=9,则b=三、解答题19请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm)(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值20已知二次函数的最小值为1,且(1)求的解析式;(2)若在区间上不单调,求实数的取值范围;(3)在区间上,的图象恒在的图象上方,试确定实数的取值范围21(本题满分12分)在长方体中,是棱上的一点,是棱上的一点.(1)求证:平面;(2)求证:;(3)若是棱的中点,是棱的中点,求证:平面.22(本小题满分10分)选修44:坐标系与参数方程以坐标原点为极点,以轴的非负半轴为极轴建立极坐标系,已知曲线的参数方程为(为参数,),直线的参数方程为(为参数)(I)点在曲线上,且曲线在点处的切线与直线垂直,求点的极坐标;(II)设直线与曲线有两个不同的交点,求直线的斜率的取值范围【命题意图】本题考查圆的参数方程、直线参数方程、直线和圆位置关系等基础知识,意在考查数形结合思想、转化思想和基本运算能力23已知椭圆C: +=1(ab0)与双曲线y2=1的离心率互为倒数,且直线xy2=0经过椭圆的右顶点()求椭圆C的标准方程;()设不过原点O的直线与椭圆C交于M、N两点,且直线OM、MN、ON的斜率依次成等比数列,求OMN面积的取值范围24(本小题满分12分)如图,四棱锥中,底面为矩形,平面,是的中点.(1)证明:平面;(2)设,三棱锥的体积,求到平面的距离.111瑞昌市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B 【解析】2 【答案】C【解析】解:S160,S170,=8(a8+a9)0,=17a90,a80,a90,公差d0Sn中最小的是S8故选:C【点评】本题考查了等差数列的通项公式性质及其求和公式、不等式的解法,考查了推理能力与计算能力,属于中档题3 【答案】B【解析】解:由三视图知几何体的直观图是半个圆锥,又正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,半圆锥的底面半径为1,高为,即半圆锥的侧视图是一个两直角边长分别为1和的直角三角形,故侧视图的面积是,故选:B【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状4 【答案】D【解析】解:f(x)=y=2x2e|x|,f(x)=2(x)2e|x|=2x2e|x|,故函数为偶函数,当x=2时,y=8e2(0,1),故排除A,B; 当x0,2时,f(x)=y=2x2ex,f(x)=4xex=0有解,故函数y=2x2e|x|在0,2不是单调的,故排除C,故选:D5 【答案】D【解析】解:“a2b2”既不能推出“ab”;反之,由“ab”也不能推出“a2b2”“a2b2”是“ab”的既不充分也不必要条件故选D6 【答案】B【解析】试题分析:由,即整式的值与函数的值符号相反,当时,;当时,结合图象即得考点:1、函数的单调性;2、函数的奇偶性;3、不等式.7 【答案】C【解析】解:A未注明a,b,c,dRB实数是复数,实数能比较大小C =,则z1=z2,正确;Dz1与z2的模相等,符合条件的z1,z2有无数多个,如单位圆上的点对应的复数的模都是1,因此不正确故选:C8 【答案】D【解析】【分析】由题意可得圆心C1和圆心C2,设直线l方程为y=kx+b,由对称性可得k和b的方程组,解方程组可得【解答】解:由题意可得圆C1圆心为(0,0),圆C2的圆心为(2,2),圆C1:x2+y2=4和圆C2:x2+y2+4x4y+4=0关于直线l对称,点(0,0)与(2,2)关于直线l对称,设直线l方程为y=kx+b,k=1且=k+b,解得k=1,b=2,故直线方程为xy=2,故选:D9 【答案】A【解析】解:sinC=2sinB,c=2b,a2b2=bc,cosA=A是三角形的内角A=30故选A【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题10【答案】B【解析】,故选B11【答案】B【解析】当x0时,f(x)=,由f(x)=x3a2,x2a2,得f(x)a2;当a2x2a2时,f(x)=a2;由f(x)=x,0xa2,得f(x)a2。当x0时,。函数f(x)为奇函数,当x0时,。对xR,都有f(x1)f(x),2a2(4a2)1,解得:。故实数a的取值范围是。12【答案】B【解析】试题分析:根据不等式组作出可行域如图所示阴影部分,目标函数可转化直线系,直线系在可行域内的两个临界点分别为和,当直线过点时,当直线过点时,即的取值范围为,所以的最小值为.故本题正确答案为B.考点:线性规划约束条件中关于最值的计算.二、填空题13【答案】【解析】考点:三角函数图象与性质,函数导数与不等式【思路点晴】本题主要考查两个知识点:三角函数图象与性质,函数导数与不等式.三角函数的极值点,也就是最大值、最小值的位置,所以两个极值点之间为半周期,由此求得周期和,再结合极值点的导数等于零,可求出.在求的过程中,由于题目没有给定它的取值范围,需要用来验证.求出表达式后,就可以求出.114【答案】【解析】15【答案】0 【解析】解:1,1,2,3,5,8,13,除以4所得的余数分别为1,1,2,3,1,0,;1,1,2,3,1,0,即新数列bn是周期为6的周期数列,b2016=b3366=b6=0,故答案为:0【点评】本题主要考查数列的应用,考查数列为周期数性,属于中档题16【答案】【解析】1111试题分析:,所以考点:利用函数性质求值17【答案】【解析】考点:1、分段函数;2、函数的零点.【方法点晴】本题考查分段函数,函数的零点,以及逻辑思维能力、等价转化能力、运算求解能力、分类讨论的思想、数形结合思想和转化化归思想,综合性强,属于较难题型.首先利用分类讨论思想结合数学结合思想,对于轴的交点个数进行分情况讨论,特别注意:1.在时也轴有一个交点式,还需且;2. 当时,与轴无交点,但中和,两交点横坐标均满足.18【答案】4 【解析】解:将代入线性回归方程可得9=1+2b,b=4故答案为:4【点评】本题考查线性回归方程,考查计算能力,属于基础题三、解答题19【答案】 【解析】解:设包装盒的高为h(cm),底面边长为a(cm),则a=x,h=(30x),0x30(1)S=4ah=8x(30x)=8(x15)2+1800,当x=15时,S取最大值(2)V=a2h=2(x3+30x2),V=6x(20x),由V=0得x=20,当x(0,20)时,V0;当x(20,30)时,V0;当x=20时,包装盒容积V(cm3)最大,此时,即此时包装盒的高与底面边长的比值是20【答案】(1);(2);(3).试题解析:(1)由已知,设,由,得,故(2)要使函数不单调,则,则(3)由已知,即,化简得,设,则只要,而,得考点:二次函数图象与性质【方法点晴】利用待定系数法求二次函数解析式的过程中注意选择合适的表达式,这是解题的关键所在;另外要注意在做题过程中体会:数形结合思想,方程思想,函数思想的应用二次函数的解析式(1)一般式:;(2)顶点式:若二次函数的顶点坐标为,则其解析式为;(3)两根式:若相应一元二次方程的两根为,则其解析式为.21【答案】【解析】【命题意图】本题综合考查了线面垂直、线线垂直、线面平行等位置关系的证明,对空间想象能力及逻辑推理有较高要求,对于证明中辅助线的运用是一个难点,本题属于中等难度.22【答案】【解析】()设D点坐标为,由已知得是以为圆心,为半径的上半圆,因为C在点处的切线与垂直,所以直线与直线的斜率相同,故D点的直角坐标为,极坐标为()设直线:与半圆相切时 ,(舍去)设点,则,故直线的斜率的取值范围为. 23【答案】 【解析】解:()双曲线的离心率为,所以椭圆的离心率,又直线xy2=0经过椭圆的右顶点,右顶点为(2,0),即a=2,c=,b=1,椭圆方程为:()由题意可设直线的方程为:y=kx+m(k0,m0),M(x1,y1)、N(x2,y2)联立消去y并整理得:(1+4k2)x2+8kmx+4(m21)=0则,于是又直线OM、MN、ON的斜率依次成等比数列由m0得:又由=64k2m216(1+4k2)(m21)=16(4k2m2+1)0,得:0m22显然m21(否则:x1x2=0,则x1,x2中至少有一个为0,直线OM、ON中至少有一个斜率不存在,与已知矛盾

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论