




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
潜江市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 执行如图所示的程序框图,如果输入的t10,则输出的i( )A4 B5C6 D72 已知,其中是虚数单位,则的虚部为( )A B C D【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.3 已知ABC中,a=1,b=,B=45,则角A等于( )A150B90C60D304 某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则其侧视图的面积是( )ABC1D5 已知是ABC的一个内角,tan=,则cos(+)等于( )ABCD6 已知函数,其中,为自然对数的底数当时,函数的图象不在直线的下方,则实数的取值范围( )ABCD【命题意图】本题考查函数图象与性质、利用导数研究函数的单调性、零点存在性定理,意在考查逻辑思维能力、等价转化能力、运算求解能力,以及构造思想、分类讨论思想的应用7 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f(x)=被称为狄利克雷函数,其中R为实数集,Q为有理数集,则关于函数f(x)有如下四个命题:f(f(x)=1;函数f(x)是偶函数;任取一个不为零的有理数T,f(x+T)=f(x)对任意的x=R恒成立;存在三个点A(x1,f(x1),B(x2,f(x2),C(x3,f(x3),使得ABC为等边三角形其中真命题的个数有( )A1个B2个C3个D4个8 已知函数()在定义域上为单调递增函数,则的最小值是( )A B C D 9 已知点F1,F2为椭圆的左右焦点,若椭圆上存在点P使得,则此椭圆的离心率的取值范围是( )A(0,)B(0,C(,D,1)10若直线:圆:交于两点,则弦长的最小值为( )A B C D11下列正方体或四面体中,、分别是所在棱的中点,这四个点不共面的一个图形是( )125名运动员争夺3项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为( )A35BCD53二、填空题13如果椭圆+=1弦被点A(1,1)平分,那么这条弦所在的直线方程是14已知=1bi,其中a,b是实数,i是虚数单位,则|abi|=15已知函数f(x)的定义域为1,5,部分对应值如下表,f(x)的导函数y=f(x)的图象如图示 x1045f(x)1221下列关于f(x)的命题:函数f(x)的极大值点为0,4;函数f(x)在0,2上是减函数;如果当x1,t时,f(x)的最大值是2,那么t的最大值为4;当1a2时,函数y=f(x)a有4个零点;函数y=f(x)a的零点个数可能为0、1、2、3、4个其中正确命题的序号是16()0+(2)3 =17函数f(x)=log(x22x3)的单调递增区间为18(本小题满分12分)点M(2pt,2pt2)(t为常数,且t0)是拋物线C:x22py(p0)上一点,过M作倾斜角互补的两直线l1与l2与C的另外交点分别为P、Q.(1)求证:直线PQ的斜率为2t;(2)记拋物线的准线与y轴的交点为T,若拋物线在M处的切线过点T,求t的值三、解答题19已知椭圆E的中心在坐标原点,左、右焦点F1、F2分别在x轴上,离心率为,在其上有一动点A,A到点F1距离的最小值是1,过A、F1作一个平行四边形,顶点A、B、C、D都在椭圆E上,如图所示()求椭圆E的方程;()判断ABCD能否为菱形,并说明理由()当ABCD的面积取到最大值时,判断ABCD的形状,并求出其最大值20【徐州市第三中学20172018学年度高三第一学期月考】为了制作广告牌,需在如图所示的铁片上切割出一个直角梯形,已知铁片由两部分组成,半径为1的半圆及等腰直角三角形,其中,为裁剪出面积尽可能大的梯形铁片(不计损耗),将点放在弧上,点放在斜边上,且,设.(1)求梯形铁片的面积关于的函数关系式;(2)试确定的值,使得梯形铁片的面积最大,并求出最大值.21如图,边长为2的正方形ABCD绕AB边所在直线旋转一定的角度(小于180)到ABEF的位置()求证:CE平面ADF;()若K为线段BE上异于B,E的点,CE=2设直线AK与平面BDF所成角为,当3045时,求BK的取值范围22已知斜率为2的直线l被圆x2+y2+14y+24=0所截得的弦长为,求直线l的方程23已知函数f(x)=alnx+x2+bx+1在点(1,f(1)处的切线方程为4xy12=0(1)求函数f(x)的解析式;(2)求f(x)的单调区间和极值24已知定义在的一次函数为单调增函数,且值域为(1)求的解析式;(2)求函数的解析式并确定其定义域潜江市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】【解析】解析:选B.程序运行次序为第一次t5,i2;第二次t16,i3;第三次t8,i4;第四次t4,i5,故输出的i5.2 【答案】B【解析】由复数的除法运算法则得,所以的虚部为.3 【答案】D【解析】解:,B=45根据正弦定理可知 sinA=A=30故选D【点评】本题主要考查正弦定理的应用属基础题4 【答案】B【解析】解:由三视图知几何体的直观图是半个圆锥,又正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,半圆锥的底面半径为1,高为,即半圆锥的侧视图是一个两直角边长分别为1和的直角三角形,故侧视图的面积是,故选:B【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状5 【答案】B【解析】解:由于是ABC的一个内角,tan=,则=,又sin2+cos2=1,解得sin=,cos=(负值舍去)则cos(+)=coscossinsin=()=故选B【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力,属于基础题6 【答案】B【解析】由题意设,且在时恒成立,而令,则,所以在上递增,所以当时,在上递增,符合题意;当时,在上递减,与题意不合;当时,为一个递增函数,而,由零点存在性定理,必存在一个零点,使得,当时,从而在上单调递减,从而,与题意不合,综上所述:的取值范围为,故选B 7 【答案】 D【解析】解:当x为有理数时,f(x)=1;当x为无理数时,f(x)=0当x为有理数时,f(f(x)=f(1)=1;当x为无理数时,f(f(x)=f(0)=1即不管x是有理数还是无理数,均有f(f(x)=1,故正确;有理数的相反数还是有理数,无理数的相反数还是无理数,对任意xR,都有f(x)=f(x),故正确; 若x是有理数,则x+T也是有理数; 若x是无理数,则x+T也是无理数根据函数的表达式,任取一个不为零的有理数T,f(x+T)=f(x)对xR恒成立,故正确; 取x1=,x2=0,x3=,可得f(x1)=0,f(x2)=1,f(x3)=0A(,0),B(0,1),C(,0),恰好ABC为等边三角形,故正确故选:D【点评】本题给出特殊函数表达式,求函数的值并讨论它的奇偶性,着重考查了有理数、无理数的性质和函数的奇偶性等知识,属于中档题8 【答案】A【解析】试题分析:由题意知函数定义域为,因为函数()在定义域上为单调递增函数在定义域上恒成立,转化为在恒成立,故选A. 1考点:导数与函数的单调性9 【答案】D【解析】解:由题意设=2x,则2x+x=2a,解得x=,故|=,|=,当P与两焦点F1,F2能构成三角形时,由余弦定理可得4c2=+2cosF1PF2,由cosF1PF2(1,1)可得4c2=cosF1PF2(,),即4c2,1,即e21,e1;当P与两焦点F1,F2共线时,可得a+c=2(ac),解得e=;综上可得此椭圆的离心率的取值范围为,1)故选:D【点评】本题考查椭圆的简单性质,涉及余弦定理和不等式的性质以及分类讨论的思想,属中档题10【答案】【解析】试题分析:直线,直线过定点,解得定点,当点(3,1)是弦中点时,此时弦长最小,圆心与定点的距离,弦长,故选B.考点:1.直线与圆的位置关系;2.直线系方程.【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是,R是圆的半径,d是圆心到直线的距离.1111 11【答案】D【解析】考点:平面的基本公理与推论12【答案】D【解析】解:每一项冠军的情况都有5种,故5名学生争夺三项冠军,获得冠军的可能的种数是 53,故选:D【点评】本题主要考查分步计数原理的应用,属于基础题二、填空题13【答案】x+4y5=0 【解析】解:设这条弦与椭圆+=1交于P(x1,y1),Q(x2,y2),由中点坐标公式知x1+x2=2,y1+y2=2,把P(x1,y1),Q(x2,y2)代入x2+4y2=36,得,得2(x1x2)+8(y1y2)=0,k=,这条弦所在的直线的方程y1=(x1),即为x+4y5=0,由(1,1)在椭圆内,则所求直线方程为x+4y5=0故答案为:x+4y5=0【点评】本题考查椭圆的方程的运用,运用点差法和中点坐标和直线的斜率公式是解题的关键14【答案】 【解析】解:=1bi,a=(1+i)(1bi)=1+b+(1b)i,解得b=1,a=2|abi|=|2i|=故答案为:【点评】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题15【答案】 【解析】解:由导数图象可知,当1x0或2x4时,f(x)0,函数单调递增,当0x2或4x5,f(x)0,函数单调递减,当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2),所以正确;正确;因为在当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,要使当x1,t函数f(x)的最大值是4,当2t5,所以t的最大值为5,所以不正确;由f(x)=a知,因为极小值f(2)未知,所以无法判断函数y=f(x)a有几个零点,所以不正确,根据函数的单调性和极值,做出函数的图象如图,(线段只代表单调性),根据题意函数的极小值不确定,分f(2)1或1f(2)2两种情况,由图象知,函数y=f(x)和y=a的交点个数有0,1,2,3,4等不同情形,所以正确,综上正确的命题序号为故答案为:【点评】本题考查导数知识的运用,考查导函数与原函数图象之间的关系,正确运用导函数图象是关键16【答案】 【解析】解:()0+(2)3=1+(2)2=1+=故答案为:17【答案】(,1) 【解析】解:函数的定义域为x|x3或x1令t=x22x3,则y=因为y=在(0,+)单调递减t=x22x3在(,1)单调递减,在(3,+)单调递增由复合函数的单调性可知函数的单调增区间为(,1)故答案为:(,1)18【答案】【解析】解:(1)证明:l1的斜率显然存在,设为k,其方程为y2pt2k(x2pt)将与拋物线x22py联立得,x22pkx4p2t(kt)0,解得x12pt,x22p(kt),将x22p(kt)代入x22py得y22p(kt)2,P点的坐标为(2p(kt),2p(kt)2)由于l1与l2的倾斜角互补,点Q的坐标为(2p(kt),2p(kt)2),kPQ2t,即直线PQ的斜率为2t.(2)由y得y,拋物线C在M(2pt,2pt2)处的切线斜率为k2t.其切线方程为y2pt22t(x2pt),又C的准线与y轴的交点T的坐标为(0,)2pt22t(2pt)解得t,即t的值为.三、解答题19【答案】 【解析】解:(I)由题意可得:,解得c=1,a=2,b2=3椭圆E的方程为=1(II)假设ABCD能为菱形,则OAOB,kOAkOB=1当ABx轴时,把x=1代入椭圆方程可得: =1,解得y=,取A,则|AD|=2,|AB|=3,此时ABCD不能为菱形当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2)联立,化为:(3+4k2)x2+8k2x+4k212=0,x1+x2=,x1x2=kOAkOB=,假设=1,化为k2=,因此平行四边形ABCD不可能是菱形综上可得:平行四边形ABCD不可能是菱形(III)当ABx轴时,由(II)可得:|AD|=2,|AB|=3,此时ABCD为矩形,S矩形ABCD=6当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2)联立,化为:(3+4k2)x2+8k2x+4k212=0,x1+x2=,x1x2=|AB|=点O到直线AB的距离d=S平行四边形ABCD=4SOAB=2=则S2=36,S6因此当平行四边形ABCD为矩形面积取得最大值620【答案】(1),其中.(2)时,【解析】试题分析:(1)求梯形铁片的面积关键是用表示上下底及高,先由图形得,这样可得高,再根据等腰直角三角形性质得,最后根据梯形面积公式得,交代定义域(2)利用导数求函数最值:先求导数,再求导函数零点,列表分析函数单调性变化规律,确定函数最值试题解析:(1)连接,根据对称性可得且,所以,所以,其中考点:利用导数求函数最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f(x)0或f(x)0求单调区间;第二步:解f(x)0得两个根x1、x2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小21【答案】 【解析】解:()证明:正方形ABCD中,CDBA,正方形ABEF中,EFBAEFCD,四边形EFDC为平行四边形,CEDF又DF平面ADF,CE平面ADF,CE平面ADF ()解:BE=BC=2,CE=,CE2=BC2+BE2BCE为直角三角形,BEBC,又BEBA,BCBA=B,BC、BA平面ABCD,BE平面ABCD 以B为原点,、的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系,则B(0,0,0),F(0,2,2),A(0,2,0),=(2,2,0),=(0,2,2)设K(0,0,m),平面BDF的一个法向量为=(x,y,z)由,得可取=(1,1,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年永新县面向社会公开招聘城市社区专职网格员【37人】考前自测高频考点模拟试题及答案详解(历年真题)
- 2025福建漳州市南靖县住房和城乡建设局招聘1人考前自测高频考点模拟试题及答案详解(名校卷)
- 2025河南明珠集团招聘8人考前自测高频考点模拟试题及答案详解参考
- 2025黑龙江鸡西市社会治安综合治理中心招聘公益性岗位就业人员1人模拟试卷有答案详解
- 2025广东深圳九州光电子技术有限公司招聘生产主管等2人考前自测高频考点模拟试题(含答案详解)
- 贵州国企招聘2025黔南州国有企业工作人员招聘48人笔试历年参考题库附带答案详解
- 浙江国企招聘2025宁波甬江软件产业园开发投资有限公司招聘1人笔试历年参考题库附带答案详解
- 2025重庆市城市建设投资(集团)有限公司招聘7人笔试历年参考题库附带答案详解
- 2025重庆千信外经贸集团有限公司数字贸易部副部长招聘1人笔试历年参考题库附带答案详解
- 2025贵州黔东南州凯里瑞禾农业投资(集团)有限责任公司招聘工作人员缴费成功人数与招聘岗位人数达不到31比例岗位截止9月17笔试历年参考题库附带答案详解
- 1.4理解与感知1812序曲课件-高中音乐湘教版必修音乐鉴赏
- 乡镇卫生院管理制度
- 洗车店卫生管理制度
- JT-T 495-2025 公路交通安全设施产品质量检验抽样方法
- 2025-2030中国铜软连接行业市场现状分析及竞争格局与投资发展研究报告
- 2024-2025学年山东省济南市高一上册第一次月考数学学情检测试题
- 2025年印刷行业趋势分析报告
- 劳动教育的跨学科融合
- 2025年中考英语高频词汇表
- 《钠离子电池简介》课件
- 十八项核心制度
评论
0/150
提交评论