



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学:2.3.1双曲线及其标准方程教案教学过程:一、问题情景问题1:对于复数a+bi和c+di(a,b,c,d R),你认为满足什么条件时,这两个复数相等?(a=c且b=d,即实部与虚部分别相等时,这两个复数相等。)问题2:若把a,b看成有序实数对(a,b),则(a,b)与复数a+bi是怎样的对应关系?有序实数对(a,b)与平面直角坐标系中的点是怎样的对应关系?(一一对应关系)实数可以用数轴上的点来表示实数 一一对应 实数轴上的点 (几何模型)数形 问题3:类比实数的性质,你能否找到用来表示复数的几何模型?还能得出复数其他的一些性质吗? (学生猜测,讨论,形成一些共识)二、建构数学1、复平面的概念把建立的直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。实轴上的点都表示实数,除原点外,虚轴上的点都表示虚数。 aZ=a+bioxybZ(a,b)1 2 332-2ACZ(a,b)B2、复数的几何意义复数 复平面内的点Z(a,b)平面向量复数a+bi,即点Z(a,b)(复数的几何形式)、即向量(复数的向量形式。以O为始点的向量,规定:相等的向量表示同一个复数。)三者的关系如下:巩固练习(1)、在复平面内,分别用点和向量表示下列复数:4,2+i,-1+3i,3-2i,-i(2)、“a=0”是“复数a+bi (a , bR)所对应的点在虚轴上”的( )。 (A)必要不充分条件 (B)充分不必要条件 (C)充要条件 (D)既不充分也不必要条件(3)、复平面内,表示一对共轭复数的两个点具有怎样的位置关系?变式:第二象限的点表示的复数有何特征?问题4:实数可以比较大小,任意两个复数可以比较大小吗?认为可以者,请拿出进行比较的方法;认为不可以者,请说明理由。(学生讨论,回答,纠正错误,形成共识)3、复数的模(或绝对值)向量的模叫做复数Z=a+bi的模(或绝对值),记作或。如果b=0,那么Z=a+bi就是实数a,它的模等于(即实数a的绝对值)。=巩固练习(1)、已知复数=3+4i,=-1+5i,试比较它们模的大小。(2)、若复数Z=3a-4ai(a0),则其模长为 。拓展与延伸:(3)满足|z|=5(zR)的z值有几个?满足|z|=5(zC)的z值有几个?这些复数对应的点在复平面内构成怎样的图形?其轨迹方程是什么?(4)设ZC,满足23的点Z的集合是什么图形?(结果动画演示)y问题5:既然复数可以用复平面内过原点的向量来表示,那么,复数的加法、减法有什么几何意义呢?它能像向量加法、减法一样,用作图的方法得到吗? xO(学生讨论,动手实践,回答;后用计算机作图并用平面几何理论证明)4、复数加法、减法的几何意义设向量,分别与复数a+bi,c+di对应,且,不共线,以,为两条邻边画平行四边形OZ,则对角线OZ所表示的向量就是复数(a+c)+(b+d)i对应的向量。(平行四边形法则)根据复数减法的定义和复数加法的几何意义,可以得到复数减法的几何意义。(三角形法则,过O作与其相等的向量)0xyZZ1Z2设=a+bi,=c+di,则-=(a-c)+(b-d)i故表明:两个复数的差的模就是复平面内与这两个复数对应的两点之间的距离。三、数学应用例1 已知复数z=在复平面内所对应的点位于第二象限,求实数m允许的取值范围。 变式:证明对一切实数m,此复数z所对应的点不可能位于第四象限(解不等式组;解不等式组无解)相互转化表示复数的点所在象限的问题 数的实部与虚部所满足的不等式组的问题(几何问题) (代数问题)数学思想:数形结合、转化思想例2 在复平面内,满足下列复数形式方程的动点Z的轨迹是什么?(1)|z-1-i|=|z+2+i|(2)|z+i|+|z-i|=4(3)|z+2|-|z-2|=1延伸:若将(2)中的等于改为小于呢?(轨迹分别是直线;椭圆;双曲线)(备用题:)已知,复数=3+4i,复数满足,求的最值。(代数方法;几何方法)四、回顾反思1、请同学们依据板书顺
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024学年江苏海安市七年级语文上学期期中考试卷附答案解析
- 四川省成都市2024-2025学年九年级上学期学业质量监测化学试卷(含答案)
- 4G移动通信技术及优化(吉林联盟) 知到智慧树答案
- 旅游业市场调研与投资建议
- DB65-T 4252.1-2019 森林公园露营地建设与服务规范 第1部分:导则
- 汉中铁路安全知识培训课件
- 永远永远爱你课件
- 水轮机及辅助设备课件
- 建筑工程项目竣工验收标准方案
- 给水设备维护与保养方案
- 《现代酒店管理与数字化运营》高职完整全套教学课件
- 叶类药材鉴定番泻叶讲解
- 药物制剂生产(高级)课件 5-11 清场管理
- 2025安徽安庆高新投资控股限公司二期招聘8人高频重点提升(共500题)附带答案详解
- 妇女保健工作计划
- 《胸腔引流管的护理》课件
- 2024-2025学年江苏省苏州市星海实验中学高一(上)期中考试物理试卷(含答案)
- 招标代理机构遴选投标方案(技术标)
- GB/T 21220-2024软磁金属材料
- 兔眼动物模型在眼科研究中的价值
- 2023年炼钢厂安全操作规程及车间安全操作规程
评论
0/150
提交评论