




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安溪县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 三个实数a、b、c成等比数列,且a+b+c=6,则b的取值范围是( )A6,2B6,0)( 0,2C2,0)( 0,6D(0,22 若函数f(x)的定义域为R,则“函数f(x)是奇函数”是“f(0)=0”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件3 已知函数f(x)满足:x4,则f(x)=;当x4时f(x)=f(x+1),则f(2+log23)=( )ABCD4 已知函数,关于的方程()有3个相异的实数根,则的取值范围是( )A B C D【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力5 定义在R上的奇函数f(x),满足,且在(0,+)上单调递减,则xf(x)0的解集为( )ABCD6 函数y=ax+1(a0且a1)图象恒过定点( )A(0,1)B(2,1)C(2,0)D(0,2)7 椭圆的左右顶点分别为,点是上异于的任意一点,且直线斜率的取值范围是,那么直线斜率的取值范围是( )A B C D【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力8 函数y=Asin(x+)(0,|,xR)的部分图象如图所示,则函数表达式( )Ay=4sin(x)By=4sin(x)Cy=4sin(x+)Dy=4sin(x+)9 如图,空间四边形ABCD中,M、G分别是BC、CD的中点,则等( )ABCD10从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )ABCD11沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为( )ABCD12i是虚数单位,计算i+i2+i3=( )A1B1CiDi二、填空题13设MP和OM分别是角的正弦线和余弦线,则给出的以下不等式:MPOM0;OM0MP;OMMP0;MP0OM,其中正确的是(把所有正确的序号都填上)14抛物线y2=8x上到顶点和准线距离相等的点的坐标为15在平面直角坐标系中,记,其中为坐标原点,给出结论如下:若,则;对平面任意一点,都存在使得;若,则表示一条直线;若,且,则表示的一条线段且长度为其中所有正确结论的序号是 16的展开式中的系数为 (用数字作答)17【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)lnx (mR)在区间1,e上取得最小值4,则m_18在中,已知,则此三角形的最大内角的度数等于_.三、解答题19(1)已知f(x)的定义域为2,1,求函数f(3x1)的定义域;(2)已知f(2x+5)的定义域为1,4,求函数f(x)的定义域20已知圆C经过点A(2,0),B(0,2),且圆心在直线y=x上,且,又直线l:y=kx+1与圆C相交于P、Q两点()求圆C的方程;()若,求实数k的值;()过点(0,1)作直线l1与l垂直,且直线l1与圆C交于M、N两点,求四边形PMQN面积的最大值21如图所示,已知在四边形ABCD中,ADCD,AD=5,AB=7,BD=8,BCD=135(1)求BDA的大小(2)求BC的长22(本题满分15分)若数列满足:(为常数, ),则称为调和数列,已知数列为调和数列,且,.(1)求数列的通项; (2)数列的前项和为,是否存在正整数,使得?若存在,求出的取值集合;若不存在,请说明理由.【命题意图】本题考查数列的通项公式以及数列求和基础知识,意在考查运算求解能力.23(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位得到的数据: 赞同 反对合计男50 150200女30 170 200合计 80320 400()能否有能否有的把握认为对这一问题的看法与性别有关?()从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述发言,设发言的女士人数为,求的分布列和期望参考公式:,24在正方体中分别为的中点.(1)求证:平面;(2)求异面直线与所成的角.111.Com安溪县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】解:设此等比数列的公比为q,a+b+c=6,=6,b=当q0时, =2,当且仅当q=1时取等号,此时b(0,2;当q0时,b=6,当且仅当q=1时取等号,此时b6,0)b的取值范围是6,0)( 0,2故选:B【点评】本题考查了等比数列的通项公式、基本不等式的性质、分类讨论思想方法,考查了推理能力与计算能力,属于中档题2 【答案】A【解析】解:由奇函数的定义可知:若f(x)为奇函数,则任意x都有f(x)=f(x),取x=0,可得f(0)=0;而仅由f(0)=0不能推得f(x)为奇函数,比如f(x)=x2,显然满足f(0)=0,但f(x)为偶函数由充要条件的定义可得:“函数f(x)是奇函数”是“f(0)=0”的充分不必要条件故选:A3 【答案】A【解析】解:32+log234,所以f(2+log23)=f(3+log23)且3+log234f(2+log23)=f(3+log23)=故选A4 【答案】D第卷(共90分)5 【答案】B【解析】解:函数f(x)是奇函数,在(0,+)上单调递减,且f ()=0,f ()=0,且在区间(,0)上单调递减,当x0,当x0时,f(x)0,此时xf(x)0当x0,当0x时,f(x)0,此时xf(x)0综上xf(x)0的解集为故选B6 【答案】D【解析】解:令x=0,则函数f(0)=a0+3=1+1=2函数f(x)=ax+1的图象必过定点(0,2)故选:D【点评】本题考查了指数函数的性质和a0=1(a0且a1),属于基础题7 【答案】B8 【答案】 D【解析】解:由函数的解析式可得A=4, =6+2,可得=再根据sin(2)+=0,可得(2)+=k,kz,再结合|,=,y=4sin(x+),故选:D【点评】本题主要考查由函数y=Asin(x+)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出,由特殊点的坐标求出的值,属于基础题9 【答案】C【解析】解:M、G分别是BC、CD的中点,=, =+=+=故选C【点评】本题考查的知识点是向量在几何中的应用,其中将化为+,是解答本题的关键10【答案】A【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,故取出的3个数可作为三角形的三边边长的概率P=故选:A【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件11【答案】A【解析】解:由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D不正确;中间的棱在侧视图中表现为一条对角线,故C不正确;而对角线的方向应该从左上到右下,故B不正确故A选项正确故选:A【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键12【答案】A【解析】解:由复数性质知:i2=1故i+i2+i3=i+(1)+(i)=1故选A【点评】本题考查复数幂的运算,是基础题二、填空题13【答案】 【解析】解:由MP,OM分别为角的正弦线、余弦线,如图,OM0MP故答案为:【点评】本题的考点是三角函数线,考查用作图的方法比较三角函数的大小,本题是直接比较三角函数线的大小,在大多数此种类型的题中都是用三角函数线比较三个函数值的大小14【答案】( 1,2) 【解析】解:设点P坐标为(a2,a)依题意可知抛物线的准线方程为x=2a2+2=,求得a=2点P的坐标为( 1,2)故答案为:( 1,2)【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题15【答案】【解析】解析:本题考查平面向量基本定理、坐标运算以及综合应用知识解决问题的能力由得,错误;与不共线,由平面向量基本定理可得,正确;记,由得,点在过点与平行的直线上,正确;由得,与不共线,正确;设,则有,且,表示的一条线段且线段的两个端点分别为、,其长度为,错误16【答案】20【解析】【知识点】二项式定理与性质【试题解析】通项公式为:令12-3r=3,r=3所以系数为:故答案为:17【答案】3e【解析】f(x),令f(x)0,则xm,且当xm时,f(x)m时,f(x)0,f(x)单调递增若m1,即m1时,f(x)minf(1)m1,不可能等于4;若1me,即eme,即me时,f(x)minf(e)1,令14,得m3e,符合题意综上所述,m3e.18【答案】【解析】考点:解三角形【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据,根据正弦定理,可设,即可利用余弦定理求解最大角的余弦,熟记正弦、余弦定理的公式是解答的关键三、解答题19【答案】 【解析】解:(1)函数y=f(x)的定义域为2,1,由23x11得:x,故函数y=f(3x1)的定义域为,;(2)函数f(2x+5)的定义域为1,4,x1,4,2x+53,13,故函数f(x)的定义域为:3,1320【答案】【解析】【分析】(I)设圆心C(a,a),半径为r,利用|AC|=|BC|=r,建立方程,从而可求圆C的方程;(II)方法一:利用向量的数量积公式,求得POQ=120,计算圆心到直线l:kxy+1=0的距离,即可求得实数k的值;方法二:设P(x1,y1),Q(x2,y2),直线方程代入圆的方程,利用韦达定理及=x1x2+y1y2=,即可求得k的值;(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,求得,根据垂径定理和勾股定理得到,再利用基本不等式,可求四边形PMQN面积的最大值;方法二:当直线l的斜率k=0时,则l1的斜率不存在,可求面积S;当直线l的斜率k0时,设,则,代入消元得(1+k2)x2+2kx3=0,求得|PQ|,|MN|,再利用基本不等式,可求四边形PMQN面积的最大值【解答】解:(I)设圆心C(a,a),半径为r因为圆经过点A(2,0),B(0,2),所以|AC|=|BC|=r,所以解得a=0,r=2,(2分)所以圆C的方程是x2+y2=4(4分)(II)方法一:因为,(6分)所以,POQ=120,(7分)所以圆心到直线l:kxy+1=0的距离d=1,(8分)又,所以k=0(9分)方法二:设P(x1,y1),Q(x2,y2),因为,代入消元得(1+k2)x2+2kx3=0(6分)由题意得:(7分)因为=x1x2+y1y2=2,又,所以x1x2+y1y2=,(8分)化简得:5k23+3(k2+1)=0,所以k2=0,即k=0(9分)(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,四边形PMQN的面积为S因为直线l,l1都经过点(0,1),且ll1,根据勾股定理,有,(10分)又根据垂径定理和勾股定理得到,(11分)而,即(13分)当且仅当d1=d时,等号成立,所以S的最大值为7(14分)方法二:设四边形PMQN的面积为S当直线l的斜率k=0时,则l1的斜率不存在,此时(10分)当直线l的斜率k0时,设则,代入消元得(1+k2)x2+2kx3=0所以同理得到(11分)=(12分)因为,所以,(13分)当且仅当k=1时,等号成立,所以S的最大值为7(14分)21【答案】 【解析】(本题满分为12分)解:(1)在ABC中,AD=5,AB=7,BD=8,由余弦定理得=BDA=60(2)ADCD,BDC=30在ABC中,由正弦定理得, 22【答案】(1),(2)详见解析. 当时,13分存在正整数,使得的取值集合为,15分23【答案】【解析】【命题意图】本题考查统计案例、超几何分布、分层抽样等基础知识,意在考查统计思想和基本运算能力
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年产880台矿用湿喷机项目可行性研究报告
- 年产52万件采油树主阀项目可行性研究报告
- 木皮项目可行性研究报告
- 教育咨询公司合伙协议书
- 湖南省农村土地承包经营权互换合同6篇
- 虚拟机保护技术-洞察及研究
- 挖挖机买卖合同2篇
- 土地承包合同变更协议4篇
- 天津市西青区中北中学2024-2025学年七年级下学期期中生物学试题(含答案)
- 河南省周口市等2地2025-2026学年高三上学期开学生物试题(含答案)
- 2025年山东高考真题化学试题(原卷版)
- 2025湖南湘潭市市直事业单位招聘(选调)工作人员48人考试参考试题及答案解析
- 第2课 教师节快乐 第2课时(课件)2025-2026学年道德与法治二年级上册统编版
- 2025年福建省福州市辅警考试题库(附答案)
- 2025年国家网络安全宣传周知识竞赛考试练习题库(完整版)含答案
- 绿化项目养护监理方案投标文件(技术方案)
- 科普短视频与新闻传播融合模式的研究
- 2025滨州市劳动合同范本(示范文本)
- 2025年教师资格证中学综合素质+教育知识与能力真题及答案
- 2025秋新部编版一年级上册语文教学计划+教学进度表
- (2025)社区网格员笔试考试题库及答案
评论
0/150
提交评论