




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三节空间点、直线、平面之间的位置关系A组基础题组1.下列说法正确的是()A.若a,b,则a与b是异面直线B.若a与b异面,b与c异面,则a与c异面C.若a,b不同在平面内,则a与b异面D.若a,b不同在任何一个平面内,则a与b异面2.已知空间中有三条线段AB,BC和CD,且ABC=BCD,那么直线AB与CD的位置关系是()A.ABCDB.AB与CD异面C.AB与CD相交D.ABCD或AB与CD异面或AB与CD相交3.设A、B、C、D是空间中四个不同的点,下列命题中,不正确的是()A.若AC与BD共面,则AD与BC共面B.若AC与BD是异面直线,则AD与BC是异面直线C.若AB=AC,DB=DC,则AD=BCD.若AB=AC,DB=DC,则ADBC4.若空间三条直线a,b,c满足ab,bc,则直线a与c()A.一定平行B.一定相交C.一定是异面直线D.平行、相交或异面5.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1l2,l2l3l1l3B.l1l2,l2l3l1l3C.l1l2l3l1,l2,l3共面D.l1,l2,l3共点l1,l2,l3共面6.如图,平行六面体ABCD-A1B1C1D1中既与AB共面又与CC1共面的棱有条.7.对于空间三条直线,有下列四个条件:三条直线两两相交且不共点;三条直线两两平行;三条直线共点;有两条直线平行,第三条直线和这两条直线都相交.其中使三条直线共面的充分条件是.8.空间四边形两对角线的长分别为6和8,所成的角为45,连接各边中点所得四边形的面积是.9.如图所示,在四面体ABCD中作截面PQR,若PQ、CB的延长线交于点M,RQ、DB的延长线交于点N,RP、DC的延长线交于点K.求证:M、N、K三点共线.10.如图所示,A是BCD所在平面外的一点,E,F分别是BC,AD的中点.(1)求证:直线EF与BD是异面直线;(2)若ACBD,AC=BD,求EF与BD所成的角.B组提升题组11.(2015广东,6,5分)若直线l1和l2是异面直线,l1在平面内,l2在平面内,l是平面与平面的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交12.如图,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是()A.A,M,O三点共线B.A,M,O,A1不共面C.A,M,C,O不共面D.B,B1,O,M共面13.如图,在三棱锥A-BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别为AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.14.已知正方体ABCD-A1B1C1D1中,E、F分别为D1C1、C1B1的中点,ACBD=P,A1C1EF=Q.(1)求证:D、B、F、E四点共面;(2)若A1C交平面DBFE于R点,求证:P、Q、R三点共线.15.如图,在三棱锥P-ABC中,PA底面ABC,D是PC的中点.已知BAC=,AB=2,AC=23,PA=2.(1)求三棱锥P-ABC的体积;(2)求异面直线BC与AD所成角的余弦值.答案全解全析A组基础题组1.D由异面直线的定义可知选D.2.D若三条线段共面,则直线AB与CD相交或平行;若三条线段不共面,则直线AB与CD是异面直线.3.C若AB=AC,DB=DC,AD不一定等于BC,C不正确.4.D当a,b,c共面时,ac;当a,b,c不共面时,a与c可能异面也可能相交.5.BA选项,l1l2,l2l3,则l1与l3的位置关系可能是相交、平行或异面;B选项正确;C选项,l1l2l3,则l1,l2,l3可能共面,也可能不共面;D选项不正确,如长方体中共顶点的三条棱所在直线,这三条直线不共面.6.答案5解析与AB和CC1都相交的棱有BC;与AB相交且与CC1平行的棱有AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的有5条.7.答案解析易知中的三条直线一定共面;三棱柱三侧棱两两平行,但不共面,故不符合;三棱锥三侧棱交于一点,但不共面,故不符合;中两条直线平行可确定一个平面,第三条直线和这两条直线都相交,则第三条直线也在这个平面内,故三条直线共面.8.答案62解析如图,已知空间四边形ABCD,对角线AC=6,BD=8,易证四边形EFGH为平行四边形,EFG或FGH为AC与BD所成的45角,故S四边形EFGH=34sin 45=62.9.证明M直线PQ,直线PQ平面PQR,M直线BC,直线BC平面BCD,M是平面PQR与平面BCD的一个公共点,即M在平面PQR与平面BCD的交线上.同理可证:N、K也在平面PQR与平面BCD的交线上.又如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线,故M、N、K三点共线.10.解析(1)证明:假设EF与BD不是异面直线,则EF与BD共面,从而DF与BE共面,即AD与BC共面,所以A,B,C,D在同一平面内,这与A是BCD所在平面外的一点相矛盾.故直线EF与BD是异面直线.(2)取CD的中点G,连接EG,FG,则ACFG,EGBD,所以相交直线EF与EG所成的角(或其补角)即为异面直线EF与BD所成的角.又因为ACBD,AC=BD,则FGEG,FG=EG.所以FEG=45,即异面直线EF与BD所成的角为45.B组提升题组11.D解法一:如图1,l1与l2是异面直线,l1与l平行,l2与l相交,故A,B不正确;如图2,l1与l2是异面直线,l1,l2都与l相交,故C不正确,选D.解法二:因为l分别与l1,l2共面,故l与l1,l2要么都不相交,要么至少与l1,l2中的一条相交.若l与l1,l2都不相交,则ll1,ll2,从而l1l2,与l1,l2是异面直线矛盾,故l至少与l1,l2中的一条相交,选D.12.A连接A1C1,AC,则A1C1AC,所以A1,C1,C,A四点共面,所以A1C平面ACC1A1,因为MA1C,所以M平面ACC1A1,又M平面AB1D1,所以M在平面ACC1A1与平面AB1D1的交线上,同理,O也在平面ACC1A1与平面AB1D1的交线上,所以A,M,O三点共线.13.答案78解析如图所示,连接DN,取线段DN的中点K,连接MK,CK.M为AD的中点,MKAN,KMC(或其补角)为异面直线AN,CM所成的角.AB=AC=BD=CD=3,AD=BC=2,N为BC的中点,易求得AN=DN=CM=22,MK=2.在RtCKN中,CK=(2)2+12=3.在CKM中,由余弦定理,得cosKMC=78.14.证明(1)如图所示.因为EF是D1B1C1的中位线,所以EFB1D1.又在正方体AC1中,B1D1BD,所以EFBD.所以EF与BD可确定一个平面,即D、B、F、E四点共面.(2)在正方体AC1中,设平面ACC1A1为,平面DBFE为.因为QA1C1,所以Q,又QEF,所以Q,则Q是与的公共点,同理,P也是与的公共点,所以=PQ.又因为A1C=R,所以RA1C,R且R,则RPQ,故P、Q、R三点共线.15.解析(1)因为PA底面ABC,所以PA是三棱锥P-ABC的高.又SABC=12223=23,所以三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度生态湿地植树造林与生态修复工程合同
- 2025年校园食品安全总监培训考核试题及答案分析
- 2025主管护师《医院感染护理学》试题及答案
- 统计系的毕业论文
- 2024年社区《网格员》考前自测题(含答案)
- 《乡土中国》教学设计思路及建议
- 国美油画系毕业论文范文
- 毕业论文完整
- 2025年一级注册结构工程师重点题库和答案分析
- 2025年农村土地经营权转让与农业供应链金融合同
- GB/T 20833.2-2025旋转电机绕组绝缘第2部分:定子绕组绝缘在线局部放电测量
- 2025人教版(PEP)2024一年级上册英语教学计划
- 2025年高考甘肃卷地理试题解读及答案详解讲评(课件)
- 金融专业面试实战经验分享:金融行业常见面试题解答
- 2025湖南省低空经济发展集团有限公司及下属子公司招聘7人笔试备考试题及答案解析
- 中医医院创建三甲汇报工作大纲
- 2025年注册会计师(CPA)全国统一考试(税法)历年参考题库含答案详解(5套)
- 卫星互联网基础知识培训课件
- 2025年高考化学四川卷试题答案解读及备考指导(精校打印)
- 2025年郑州小升初选拔考试题目及答案
- 2025年中医执业医师考试试题及答案
评论
0/150
提交评论