邹平县三中2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
邹平县三中2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
邹平县三中2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
邹平县三中2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
邹平县三中2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

邹平县三中2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设集合S=|x|x1或x5,T=x|axa+8,且ST=R,则实数a的取值范围是( )A3a1B3a1Ca3或a1Da3或a12 两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20,灯塔B在观察站C的南偏东40,则灯塔A与灯塔B的距离为( )AakmB akmC2akmD akm3 从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是( )ABCD4 自圆:外一点引该圆的一条切线,切点为,切线的长度等于点到原点的长,则点轨迹方程为( )ABCD【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力5 已知函数f(x)=2ax33x2+1,若 f(x)存在唯一的零点x0,且x00,则a的取值范围是( )A(1,+)B(0,1)C(1,0)D(,1)6 已知直线l平面,P,那么过点P且平行于l的直线( )A只有一条,不在平面内B只有一条,在平面内C有两条,不一定都在平面内D有无数条,不一定都在平面内7 在等差数列an中,a1=2,a3+a5=8,则a7=( )A3B6C7D88 设F1,F2分别是椭圆+=1(ab0)的左、右焦点,过F2的直线交椭圆于P,Q两点,若F1PQ=60,|PF1|=|PQ|,则椭圆的离心率为( )ABCD9 某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )A BC. D10过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是原点,若|AF|=3,则AOF的面积为( )ABCD211如图,在等腰梯形ABCD中,AB=2DC=2,DAB=60,E为AB的中点,将ADE与BEC分别沿ED、EC向上折起,使A、B重合于点P,则PDCE三棱锥的外接球的体积为( )ABCD12已知数列是各项为正数的等比数列,点、都在直线上,则数列的前项和为( )A B C D二、填空题13某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔小时各服一次药,每次一片,每片毫克假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用若该患者第一天上午点第一次服药,则第二天上午点服完药时,药在其体内的残留量是毫克,若该患者坚持长期服用此药明显副作用(此空填“有”或“无”)14如图,在棱长为的正方体中,点分别是棱的中点,是侧面内一点,若平行于平面,则线段长度的取值范围是_.15已知a,b是互异的负数,A是a,b的等差中项,G是a,b的等比中项,则A与G的大小关系为16若正方形P1P2P3P4的边长为1,集合M=x|x=且i,j1,2,3,4,则对于下列命题:当i=1,j=3时,x=2;当i=3,j=1时,x=0;当x=1时,(i,j)有4种不同取值;当x=1时,(i,j)有2种不同取值;M中的元素之和为0其中正确的结论序号为(填上所有正确结论的序号)17若函数的定义域为,则函数的定义域是 18在ABC中,若角A为锐角,且=(2,3),=(3,m),则实数m的取值范围是三、解答题19在直角坐标系xOy中,圆C的参数方程(为参数)以O为极点,x轴的非负半轴为极轴建立极坐标系()求圆C的极坐标方程;()直线l的极坐标方程是(sin+)=3,射线OM:=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长 20已知曲线C的参数方程为(y为参数),过点A(2,1)作平行于=的直线l 与曲线C分别交于B,C两点(极坐标系的极点、极轴分别与直角坐标系的原点、x轴的正半轴重合)()写出曲线C的普通方程;()求B、C两点间的距离21已知函数f(x)=lnxa(1),aR()求f(x)的单调区间;()若f(x)的最小值为0(i)求实数a的值;(ii)已知数列an满足:a1=1,an+1=f(an)+2,记x表示不大于x的最大整数,求证:n1时an=2 22如图所示,已知在四边形ABCD中,ADCD,AD=5,AB=7,BD=8,BCD=135(1)求BDA的大小(2)求BC的长23(本小题满分13分)在四棱锥中,底面是梯形,为的中点()在棱上确定一点,使得平面;()若,求三棱锥的体积24设A=,,集合(1)求的值,并写出集合A的所有子集; (2)若集合,且,求实数的值。邹平县三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】A【解析】解:S=|x|x1或x5,T=x|axa+8,且ST=R,解得:3a1故选:A2 【答案】D【解析】解:根据题意,ABC中,ACB=1802040=120,AC=BC=akm,由余弦定理,得cos120=,解之得AB=akm,即灯塔A与灯塔B的距离为akm,故选:D【点评】本题给出实际应用问题,求海洋上灯塔A与灯塔B的距离着重考查了三角形内角和定理和运用余弦定理解三角形等知识,属于基础题3 【答案】B【解析】解:由题意知,女生第一次、第二次均未被抽到,她第三次被抽到,这三个事件是相互独立的,第一次不被抽到的概率为,第二次不被抽到的概率为,第三次被抽到的概率是,女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是=,故选B4 【答案】D【解析】由切线性质知,所以,则由,得,化简得,即点的轨迹方程,故选D,5 【答案】D【解析】解:若a=0,则函数f(x)=3x2+1,有两个零点,不满足条件若a0,函数的f(x)的导数f(x)=6ax26x=6ax(x),若 f(x)存在唯一的零点x0,且x00,若a0,由f(x)0得x或x0,此时函数单调递增,由f(x)0得0x,此时函数单调递减,故函数在x=0处取得极大值f(0)=10,在x=处取得极小值f(),若x00,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件若a0,由f(x)0得x0,此时函数递增,由f(x)0得x或x0,此时函数单调递减,即函数在x=0处取得极大值f(0)=10,在x=处取得极小值f(),若存在唯一的零点x0,且x00,则f()0,即2a()33()2+10,()21,即10,解得a1,故选:D【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键注意分类讨论6 【答案】B【解析】解:假设过点P且平行于l的直线有两条m与nml且nl由平行公理4得mn这与两条直线m与n相交与点P相矛盾又因为点P在平面内所以点P且平行于l的直线有一条且在平面内所以假设错误故选B【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型7 【答案】B【解析】解:在等差数列an中a1=2,a3+a5=8,2a4=a3+a5=8,解得a4=4,公差d=,a7=a1+6d=2+4=6故选:B8 【答案】 D【解析】解:设|PF1|=t,|PF1|=|PQ|,F1PQ=60,|PQ|=t,|F1Q|=t,由F1PQ为等边三角形,得|F1P|=|F1Q|,由对称性可知,PQ垂直于x轴,F2为PQ的中点,|PF2|=,|F1F2|=,即2c=,由椭圆定义:|PF1|+|PF2|=2a,即2a=t=t,椭圆的离心率为:e=故选D9 【答案】A【解析】试题分析:利用余弦定理求出正方形面积;利用三角形知识得出四个等腰三角形面积;故八边形面积.故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式求出个三角形的面积;接下来利用余弦定理可求出正方形的边长的平方,进而得到正方形的面积,最后得到答案.10【答案】B【解析】解:抛物线y2=4x的准线l:x=1|AF|=3,点A到准线l:x=1的距离为31+xA=3xA=2,yA=2,AOF的面积为=故选:B【点评】本题考查抛物线的定义,考查三角形的面积的计算,确定A的坐标是解题的关键11【答案】C【解析】解:易证所得三棱锥为正四面体,它的棱长为1,故外接球半径为,外接球的体积为,故选C【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题12【答案】C 【解析】解析:本题考查等比数列的通项公式与前项和公式,,,数列的前项和为,选C二、填空题13【答案】, 无【解析】【知识点】等比数列【试题解析】设该病人第n次服药后,药在体内的残留量为毫克,所以)=300,=350由,所以是一个等比数列,所以所以若该患者坚持长期服用此药无明显副作用。故答案为:, 无 14【答案】【解析】考点:点、线、面的距离问题.【方法点晴】本题主要考查了点、线、面的距离问题,其中解答中涉及到直线与平面平行的判定与性质,三角形的判定以及直角三角形的勾股定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,同时考查了学生空间想象能力的训练,试题有一定的难度,属于中档试题.15【答案】AG 【解析】解:由题意可得A=,G=,由基本不等式可得AG,当且仅当a=b取等号,由题意a,b是互异的负数,故AG故答案是:AG【点评】本题考查等差中项和等比中项,涉及基本不等式的应用,属基础题16【答案】 【解析】解:建立直角坐标系如图:则P1(0,1),P2(0,0),P3(1,0),P4(1,1)集合M=x|x=且i,j1,2,3,4,对于,当i=1,j=3时,x=(1,1)(1,1)=1+1=2,故正确;对于,当i=3,j=1时,x=(1,1)(1,1)=2,故错误;对于,集合M=x|x=且i,j1,2,3,4,=(1,1),=(0,1),=(1,0),=1; =1; =1; =1;当x=1时,(i,j)有4种不同取值,故正确;同理可得,当x=1时,(i,j)有4种不同取值,故错误;由以上分析,可知,当x=1时,(i,j)有4种不同取值;当x=1时,(i,j)有4种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=2;当i=2,j=4,或i=4,j=2时,x=0,M中的元素之和为0,故正确综上所述,正确的序号为:,故答案为:【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标系,求得=(1,1),=(0,1),=(1,0)是关键,考查分析、化归与运算求解能力,属于难题17【答案】【解析】试题分析:依题意得.考点:抽象函数定义域18【答案】 【解析】解:由于角A为锐角,且不共线,6+3m0且2m9,解得m2且m实数m的取值范围是故答案为:【点评】本题考查平面向量的数量积运算,考查了向量共线的条件,是基础题三、解答题19【答案】 【解析】解:(I)圆C的参数方程(为参数)消去参数可得:(x1)2+y2=1把x=cos,y=sin代入化简得:=2cos,即为此圆的极坐标方程(II)如图所示,由直线l的极坐标方程是(sin+)=3,射线OM:=可得普通方程:直线l,射线OM联立,解得,即Q联立,解得或P|PQ|=2 20【答案】 【解析】解:()由曲线C的参数方程为(y为参数),消去参数t得,y2=4x()依题意,直线l的参数方程为(t为参数),代入抛物线方程得 可得,t1t2=14|BC|=|t1t2|=8【点评】本题考查了参数方程化为普通方程、参数的意义、弦长公式,考查了计算能力,属于基础题21【答案】 【解析】解:()函数f(x)的定义域为(0,+),且f(x)=当a0时,f(x)0,所以f(x)在区间(0,+)内单调递增;当a0时,由f(x)0,解得xa;由f(x)0,解得0xa所以f(x)的单调递增区间为(a,+),单调递减区间为(0,a)综上述:a0时,f(x)的单调递增区间是(0,+);a0时,f(x)的单调递减区间是(0,a),单调递增区间是(a,+)()()由()知,当a0时,f(x)无最小值,不合题意;当a0时,f(x)min=f(a)=1a+lna=0,令g(x)=1x+lnx(x0),则g(x)=1+=,由g(x)0,解得0x1;由g(x)0,解得x1所以g(x)的单调递增区间为(0,1),单调递减区间为(1,+)故g(x)max=g(1)=0,即当且仅当x=1时,g(x)=0因此,a=1()因为f(x)=lnx1+,所以an+1=f(an)+2=1+lnan由a1=1得a2=2于是a3=+ln2因为ln21,所以2a3猜想当n3,nN时,2an下面用数学归纳法进行证明当n=3时,a3=+ln2,故2a3成立假设当n=k(k3,kN)时,不等式2ak成立则当n=k+1时,ak+1=1+lnak,由()知函数h(x)=f(x)+2=1+lnx在区间(2,)单调递增,所以h(2)h(ak)h(),又因为h(2)=1+ln22

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论