




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
振安区高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若命题“pq”为假,且“q”为假,则( )A“pq”为假Bp假Cp真D不能判断q的真假2 下列哪组中的两个函数是相等函数( )A BC D3 若是两条不同的直线,是三个不同的平面,则下列为真命题的是( )A若,则B若,则C若,则D若,则4 设集合A1,2,3,B4,5,Mx|xab,aA,bB,则M中元素的个数为()。A3B4C5D65 如图,在四棱锥PABCD中,PA平面ABCD,底面ABCD是菱形,AB=2,BAD=60()求证:BD平面PAC;()若PA=AB,求PB与AC所成角的余弦值;()当平面PBC与平面PDC垂直时,求PA的长【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离6 函数f(x)=有且只有一个零点时,a的取值范围是( )Aa0B0aCa1Da0或a17 直线l平面,直线m平面,命题p:“若直线m,则ml”的逆命题、否命题、逆否命题中真命题的个数为( )A0B1C2D38 已知函数f(x)=x26x+7,x(2,5的值域是( )A(1,2B(2,2C2,2D2,1)9 下面各组函数中为相同函数的是( )Af(x)=,g(x)=x1Bf(x)=,g(x)=Cf(x)=ln ex与g(x)=elnxDf(x)=(x1)0与g(x)=10设P是椭圆+=1上一点,F1、F2是椭圆的焦点,若|PF1|等于4,则|PF2|等于( )A22B21C20D1311若将函数y=tan(x+)(0)的图象向右平移个单位长度后,与函数y=tan(x+)的图象重合,则的最小值为( )ABCD12定义在1,+)上的函数f(x)满足:当2x4时,f(x)=1|x3|;f(2x)=cf(x)(c为正常数),若函数的所有极大值点都落在同一直线上,则常数c的值是( )A1B2C或3D1或2二、填空题13三角形中,则三角形的面积为 .14“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负现在甲乙丙三人一起玩“黑白配”游戏设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是15函数f(x)=loga(x1)+2(a0且a1)过定点A,则点A的坐标为16在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率P的取值范围是17(文科)与直线垂直的直线的倾斜角为_18已知条件p:x|xa|3,条件q:x|x22x30,且q是p的充分不必要条件,则a的取值范围是三、解答题19已知p:“直线x+ym=0与圆(x1)2+y2=1相交”;q:“方程x2x+m4=0的两根异号”若pq为真,p为真,求实数m的取值范围20已知函数f(x)=xalnx(aR)(1)当a=2时,求曲线y=f(x)在点A(1,f(1)处的切线方程;(2)求函数f(x)的极值21【无锡市2018届高三上期中基础性检测】在一块杂草地上有一条小路AB,现在小路的一边围出一个三角形(如图)区域,在三角形ABC内种植花卉.已知AB长为1千米,设角AC边长为BC边长的倍,三角形ABC的面积为S(千米2).试用和表示;(2)若恰好当时,S取得最大值,求的值.22已知集合A=x|x25x60,集合B=x|6x25x+10,集合C=x|(xm)(m+9x)0(1)求AB(2)若AC=C,求实数m的取值范围23在极坐标系下,已知圆O:=cos+sin和直线l:(1)求圆O和直线l的直角坐标方程;(2)当(0,)时,求直线l与圆O公共点的极坐标24如图,四面体ABCD中,平面ABC平面BCD,AC=AB,CB=CD,DCB=120,点E在BD上,且CE=DE()求证:ABCE;()若AC=CE,求二面角ACDB的余弦值振安区高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:命题“pq”为假,且“q”为假,q为真,p为假;则pq为真,故选B【点评】本题考查了复合命题的真假性的判断,属于基础题2 【答案】D111【解析】考点:相等函数的概念.3 【答案】C【解析】试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A不正确;两个平面平行,两个平面内的直线不一定平行,所以B不正确;垂直于同一平面的两个平面不一定垂直,可能相交,也可能平行,所以D不正确;根据面面垂直的判定定理知C正确故选C考点:空间直线、平面间的位置关系4 【答案】B【解析】由题意知xab,aA,bB,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B5 【答案】 【解析】解:(I)证明:因为四边形ABCD是菱形,所以ACBD,又因为PA平面ABCD,所以PABD,PAAC=A所以BD平面PAC(II)设ACBD=O,因为BAD=60,PA=AB=2,所以BO=1,AO=OC=,以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系Oxyz,则P(0,2),A(0,0),B(1,0,0),C(0,0)所以=(1,2),设PB与AC所成的角为,则cos=|(III)由(II)知,设,则设平面PBC的法向量=(x,y,z)则=0,所以令,平面PBC的法向量所以,同理平面PDC的法向量,因为平面PBC平面PDC,所以=0,即6+=0,解得t=,所以PA=【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力6 【答案】D【解析】解:f(1)=lg1=0,当x0时,函数f(x)没有零点,故2x+a0或2x+a0在(,0上恒成立,即a2x,或a2x在(,0上恒成立,故a1或a0;故选D【点评】本题考查了分段函数的应用,函数零点与方程的关系应用及恒成立问题,属于基础题7 【答案】B【解析】解:直线l平面,直线m平面,命题p:“若直线m,则ml”,命题P是真命题,命题P的逆否命题是真命题;P:“若直线m不垂直于,则m不垂直于l”,P是假命题,命题p的逆命题和否命题都是假命题故选:B8 【答案】C【解析】解:由f(x)=x26x+7=(x3)22,x(2,5当x=3时,f(x)min=2当x=5时,函数f(x)=x26x+7,x(2,5的值域是2,2故选:C9 【答案】D【解析】解:对于A:f(x)=|x1|,g(x)=x1,表达式不同,不是相同函数;对于B:f(x)的定义域是:x|x1或x1,g(x)的定义域是xx1,定义域不同,不是相同函数;对于C:f(x)的定义域是R,g(x)的定义域是x|x0,定义域不同,不是相同函数;对于D:f(x)=1,g(x)=1,定义域都是x|x1,是相同函数;故选:D【点评】本题考查了判断两个函数是否是同一函数问题,考查指数函数、对数函数的性质,是一道基础题10【答案】A【解析】解:P是椭圆+=1上一点,F1、F2是椭圆的焦点,|PF1|等于4,|PF2|=213|PF1|=264=22故选:A【点评】本题考查椭圆的简单性质的应用,是基础题,解题时要熟练掌握椭圆定义的应用11【答案】D【解析】解:y=tan(x+),向右平移个单位可得:y=tan(x)+=tan(x+)+k=k+(kZ),又0min=故选D12【答案】D【解析】解:当2x4时,f(x)=1|x3|当1x2时,22x4,则f(x)=f(2x)=(1|2x3|),此时当x=时,函数取极大值;当2x4时,f(x)=1|x3|;此时当x=3时,函数取极大值1;当4x8时,24,则f(x)=cf()=c(1|3|),此时当x=6时,函数取极大值c函数的所有极大值点均落在同一条直线上,即点(,),(3,1),(6,c)共线,=,解得c=1或2故选D【点评】本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数f(x)的解析式,进而求出三个函数的极值点坐标,是解答本题的关键二、填空题13【答案】【解析】试题分析:因为中,由正弦定理得,又,即,所以,考点:正弦定理,三角形的面积【名师点睛】本题主要考查正弦定理的应用,三角形的面积公式在解三角形有关问题时,正弦定理、余弦定理是两个主要依据,一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦交叉出现时,往往运用正弦定理将边化为正弦,再结合和、差、倍角的正弦公式进行解答解三角形时三角形面积公式往往根据不同情况选用不同形式,等等14【答案】 【解析】解:一次游戏中,甲、乙、丙出的方法种数都有2种,所以总共有23=8种方案,而甲胜出的情况有:“甲黑乙白丙白”,“甲白乙黑丙黑”,共2种,所以甲胜出的概率为故答案为【点评】本题考查等可能事件的概率,关键是分清甲在游戏中胜出的情况数目15【答案】(2,2) 【解析】解:loga1=0,当x1=1,即x=2时,y=2,则函数y=loga(x1)+2的图象恒过定点 (2,2)故答案为:(2,2)【点评】本题考查对数函数的性质和特殊点,主要利用loga1=0,属于基础题16【答案】 【解析】解:由题设知C41p(1p)3C42p2(1p)2,解得p,0p1,故答案为:17【答案】【解析】试题分析:依题意可知所求直线的斜率为,故倾斜角为.考点:直线方程与倾斜角 18【答案】0,2 【解析】解:命题p:|xa|3,解得a3xa+3,即p=(a3,a+3);命题q:x22x30,解得1x3,即q=(1,3)q是p的充分不必要条件,qp,解得0a2,则实数a的取值范围是0,2故答案为:0,2【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题三、解答题19【答案】 【解析】解:若命题p是真命题:“直线x+ym=0与圆(x1)2+y2=1相交”,则1,解得1;若命题q是真命题:“方程x2x+m4=0的两根异号”,则m40,解得m4若pq为真,p为真,则p为假命题,q为真命题实数m的取值范围是或【点评】本题考查了复合命题真假的判定方法、直线与圆的位置关系、一元二次的实数根与判别式的关系,考查了推理能力与计算能力,属于中档题20【答案】 【解析】解:函数f(x)的定义域为(0,+),(1)当a=2时,f(x)=x2lnx,因而f(1)=1,f(1)=1,所以曲线y=f(x)在点A(1,f(1)处的切线方程为y1=(x1),即x+y2=0(2)由,x0知:当a0时,f(x)0,函数f(x)为(0,+)上的增函数,函数f(x)无极值;当a0时,由f(x)=0,解得x=a又当x(0,a)时,f(x)0,当x(a,+)时,f(x)0从而函数f(x)在x=a处取得极小值,且极小值为f(a)=aalna,无极大值综上,当a0时,函数f(x)无极值;当a0时,函数f(x)在x=a处取得极小值aalna,无极大值21【答案】(1) (2)【解析】试题解析:(1)设边,则,在三角形中,由余弦定理得:,所以,所以,(2)因为,令,得且当时,当时,所以当时,面积最大,此时,所以,解得,因为,则.点睛:解三角形的实际应用,首先转化为几何思想,将图形对应到三角形,找到已知条件,本题中对应知道一个角,一条边,及其余两边的比例关系,利用余弦定理得到函数方程;面积最值的处理过程中,若函数比较复杂,则借助导数去求解最值。22【答案】 【解析】解:由合A=x|x25x60,集合B=x|6x25x+10,集合C=x|(xm)(m+9x)0A=x|1x6,C=x|mxm+9(1),(2)由AC=C,可得AC即,解得3m123【答案】 【解析】解:(1)圆O:=cos+sin,即2=cos+sin,故圆O 的直角坐标方程为:x2+y2=x+y,即x2+y2xy=0直线l:,即sincos=1,则直线的直角坐标方程为:yx=1,即xy+1=0(2)由,可得 ,直线l与圆O公共点的直角坐标为(0,1),故直线l 与圆O 公共点的一个极坐标为【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,直线和圆的位置关系,属于基础题24【答案】 【解析】解:()证明:BCD中,CB=CD,BCD=120,CDB=30,EC=DE,DCE=30,BCE=90,ECBC,又平面ABC平面BCD,平面ABC与平面BCD的交线为BC,EC平面ABC,ECAB()解:取BC的中点O,BE中点F,连结OA,OF,AC=AB,AOBC,平面ABC平面BCD,平面ABC平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2.2《资源枯竭地区的发展-以德国鲁尔区为例》教学设计2024-2025学年高中地理鲁教版(2019)选择性必修二
- 一、简单电现象说课稿-2025-2026学年初中物理九年级全一册北京课改版
- 六年级体育上册 第二十八课 跳长绳说课稿
- 河南省濮阳市范县白衣阁第二中学初中信息技术 3.2.1《windows初步》说课稿 人教新课标版
- 高校竞聘考试题目及答案
- 2025学校水果采购合同
- 中高职衔接培养中实践教学环节的优化路径
- 2025娱乐公司高层管理合同
- 项目管理信息化对文体场馆建设的推动作用
- 电气类专业课程体系与行业需求对接机制构建
- 小学一年级劳动教育课外实践活动计划
- 上市公司账户管理制度
- 小学生金融知识科普课件
- GB/T 21711.3-2025基础机电继电器第3部分:强制定位(机械联锁)触点继电器
- 口腔助理医师资格考试《第一单元》真题及答案(2025年新版)
- 糖尿病前期治未病干预指南(2025版)解读
- 羊肚菌种植合作协议合同
- 生动的住院病历书写规范
- 护理安全警示教育课件
- 2024年中医康复考试提分法试题及答案
- PLC应用技术课件 任务6. S7-1200 PLC控制电动机正反转
评论
0/150
提交评论