淮安区一中2018-2019学年上学期高二数学12月月考试题含解析_第1页
淮安区一中2018-2019学年上学期高二数学12月月考试题含解析_第2页
淮安区一中2018-2019学年上学期高二数学12月月考试题含解析_第3页
淮安区一中2018-2019学年上学期高二数学12月月考试题含解析_第4页
淮安区一中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

淮安区一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 以的焦点为顶点,顶点为焦点的椭圆方程为( )ABCD 2 下列结论正确的是( )A若直线l平面,直线l平面,则B若直线l平面,直线l平面,则C若直线l1,l2与平面所成的角相等,则l1l2D若直线l上两个不同的点A,B到平面的距离相等,则l3 已知,那么夹角的余弦值( )ABC2D4 已知全集I=1,2,3,4,5,6,7,8,集合M=3,4,5,集合N=1,3,6,则集合2,7,8是( )AMNBMNCIMINDIMIN5 某公园有P,Q,R三只小船,P船最多可乘3人,Q船最多可乘2人,R船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( )A36种B18种C27种D24种6 已知随机变量X服从正态分布N(2,2),P(0X4)=0.8,则P(X4)的值等于( )A0.1B0.2C0.4D0.67 已知三棱柱 的侧棱与底面边长都相等,在底面上的射影为的中点, 则异面直线与所成的角的余弦值为( ) A B C. D8 在的展开式中,含项的系数为( )(A) ( B ) (C) (D) 9 若命题“p或q”为真,“非p”为真,则( )Ap真q真Bp假q真Cp真q假Dp假q假10定义运算,例如若已知,则=( )ABCD11设函数是定义在上的可导函数,其导函数为,且有,则不等式的解集为 A、B、C、 D、12连续抛掷两次骰子得到的点数分别为m和n,记向量=(m,n),向量=(1,2),则的概率是( )ABCD二、填空题13抛物线y2=8x上到顶点和准线距离相等的点的坐标为14已知变量x,y,满足,则z=log4(2x+y+4)的最大值为 15设,则的最小值为 。16函数f(x)=的定义域是17长方体ABCDA1B1C1D1的棱AB=AD=4cm,AA1=2cm,则点A1到平面AB1D1的距离等于cm18对于映射f:AB,若A中的不同元素有不同的象,且B中的每一个元素都有原象,则称f:AB为一一映射,若存在对应关系,使A到B成为一一映射,则称A到B具有相同的势,给出下列命题:A是奇数集,B是偶数集,则A和B具有相同的势;A是平面直角坐标系内所有点形成的集合,B是复数集,则A和B不具有相同的势;若区间A=(1,1),B=R,则A和B具有相同的势其中正确命题的序号是三、解答题19(本小题满分12分)已知椭圆:的左、右焦点分别为,过点作垂直于轴的直线,直线垂直于点,线段的垂直平分线交于点.(1)求点的轨迹的方程;(2)过点作两条互相垂直的直线,且分别交椭圆于,求四边形面积的最小值.20本小题满分12分如图,在边长为4的菱形中,点、分别在边、上点与点、不重合,沿将翻折到的位置,使平面平面求证:平面;记三棱锥的体积为,四棱锥的体积为,且,求此时线段的长21设an是公比小于4的等比数列,Sn为数列an的前n项和已知a1=1,且a1+3,3a2,a3+4构成等差数列(1)求数列an的通项公式;(2)令bn=lna3n+1,n=12求数列bn的前n项和Tn22已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D(2,0)(1)求该椭圆的标准方程;(2)设点,若P是椭圆上的动点,求线段PA的中点M的轨迹方程23(本小题满分12分)数列满足:,且.(1)求数列的通项公式;(2)求数列的前项和.24(本小题满分12分)一个盒子里装有编号为1、2、3、4、5的五个大小相同的小球,第一次从盒子里随机抽取2个小球,记下球的编号,并将小球放回盒子,第二次再从盒子里随机抽取2个小球,记下球的编号()求第一次或第二次取到3号球的概率;()设为两次取球时取到相同编号的小球的个数,求的分布列与数学期望淮安区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:双曲线的顶点为(0,2)和(0,2),焦点为(0,4)和(0,4)椭圆的焦点坐标是为(0,2)和(0,2),顶点为(0,4)和(0,4)椭圆方程为故选D【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质2 【答案】B【解析】解:A选项中,两个平面可以相交,l与交线平行即可,故不正确;B选项中,垂直于同一平面的两个平面平行,正确;C选项中,直线与直线相交、平行、异面都有可能,故不正确;D中选项也可能相交故选:B【点评】本题考查平面与平面,直线与直线,直线与平面的位置关系,考查学生分析解决问题的能力,比较基础3 【答案】A【解析】解:,=,|=, =11+3(1)=4,cos=,故选:A【点评】本题考查了向量的夹角公式,属于基础题4 【答案】D【解析】解:全集I=1,2,3,4,5,6,7,8,集合M=3,4,5,集合N=1,3,6,MN=1,2,3,6,7,8,MN=3;IMIN=1,2,4,5,6,7,8;IMIN=2,7,8,故选:D5 【答案】 C【解析】排列、组合及简单计数问题【专题】计算题;分类讨论【分析】根据题意,分4种情况讨论,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,P船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,P船乘1个大人和2个小孩共3人,Q船乘2个大人,分别求出每种情况下的乘船方法,进而由分类计数原理计算可得答案【解答】解:分4种情况讨论,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,有A33=6种情况,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,有A33A22=12种情况,P船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,有C322=6种情况,P船乘1个大人和2个小孩共3人,Q船乘2个大人,有C31=3种情况,则共有6+12+6+3=27种乘船方法,故选C【点评】本题考查排列、组合公式与分类计数原理的应用,关键是分析得出全部的可能情况与正确运用排列、组合公式6 【答案】A【解析】解:随机变量服从正态分布N(2,o2),正态曲线的对称轴是x=2P(0X4)=0.8,P(X4)=(10.8)=0.1,故选A7 【答案】D【解析】考点:异面直线所成的角.8 【答案】C 【解析】因为,所以项只能在展开式中,即为,系数为故选C9 【答案】B【解析】解:若命题“p或q”为真,则p真或q真,若“非p”为真,则p为假,p假q真,故选:B【点评】本题考查了复合命题的真假的判断,是一道基础题10【答案】D【解析】解:由新定义可得, =故选:D【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题11【答案】C.【解析】由,得:,即,令,则当时,即在是减函数, ,在是减函数,所以由得,即,故选12【答案】A【解析】解:因为抛掷一枚骰子有6种结果,设所有连续抛掷两次骰子得到的点数为(m,n),有36种可能,而使的m,n满足m=2n,这样的点数有(2,1),(4,2),(6,3)共有3种可能;由古典概型公式可得的概率是:;故选:A【点评】本题考查古典概型,考查用列举法得到满足条件的事件数,是一个基础题二、填空题13【答案】( 1,2) 【解析】解:设点P坐标为(a2,a)依题意可知抛物线的准线方程为x=2a2+2=,求得a=2点P的坐标为( 1,2)故答案为:( 1,2)【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题14【答案】【解析】解:作的可行域如图:易知可行域为一个三角形,验证知在点A(1,2)时,z1=2x+y+4取得最大值8,z=log4(2x+y+4)最大是,故答案为:【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题15【答案】9【解析】由柯西不等式可知16【答案】x|x2且x3 【解析】解:根据对数函数及分式有意义的条件可得解可得,x2且x3故答案为:x|x2且x317【答案】 【解析】解:由题意可得三棱锥B1AA1D1的体积是=,三角形AB1D1的面积为4,设点A1到平面AB1D1的距离等于h,则,则h=故点A1到平面AB1D1的距离为故答案为:18【答案】 【解析】解:根据一一映射的定义,集合A=奇数B=偶数,不妨给出对应法则加1则AB是一一映射,故正确;对设Z点的坐标(a,b),则Z点对应复数a+bi,a、bR,复合一一映射的定义,故不正确;对,给出对应法则y=tanx,对于A,B两集合可形成f:AB的一一映射,则A、B具有相同的势;正确故选:【点评】本题借助考查命题的真假判断,考查一一映射的定义,属于基础题型,考查考生对新定义题的理解与应用能力三、解答题19【答案】(1);(2).【解析】试题分析:(1)求得椭圆的焦点坐标,连接,由垂直平分线的性质可得,运用抛物线的定义,即可得到所求轨迹方程;(2)分类讨论:当或中的一条与轴垂直而另一条与轴重合时,此时四边形面积当直线和的斜率都存在时,不妨设直线的方程为,则直线的方程为分别与椭圆的方程联立得到根与系数的关系,利用弦长公式可得,利用四边形面积即可得到关于斜率的式子,再利用配方和二次函数的最值求法,即可得出(2)当直线的斜率存在且不为零时,直线的斜率为,则直线的斜率为,直线的方程为,联立,得.111,.由于直线的斜率为,用代换上式中的。可得.,四边形的面积.由于,当且仅当,即时取得等号.易知,当直线的斜率不存在或斜率为零时,四边形的面积.综上,四边形面积的最小值为.考点:椭圆的简单性质1【思路点晴】求得椭圆的焦点坐标,由垂直平分线的性质可得,运用抛物线的定义,即可得所求的轨迹方程.第二问分类讨论,当或中的一条与轴垂直而另一条与轴重合时,四边形面积为.当直线和的斜率都存在时,分别设出的直线方程与椭圆联立得到根与系数的关系,利用弦长公式求得,从而利用四边形的面积公式求最值.20【答案】【解析】证明:在菱形中, , 平面平面,平面平面,且平面,平面, 平面,平面设由知,平面, 为三棱锥及四棱锥的高, , , , , 21【答案】 【解析】解:(1)设等比数列an的公比为q4,a1+3,3a2,a3+4构成等差数列23a2=a1+3+a3+4,6q=1+7+q2,解得q=2(2)由(1)可得:an=2n1bn=lna3n+1=ln23n=3nln2数列bn的前n项和Tn=3ln2(1+2+n)=ln222【答案】 【解析】解:(1)由题意知椭圆的焦点在x轴上,设椭圆的标准方程是椭圆经过点D(2,0),左焦点为,a=2,可得b=1因此,椭圆的标准方程为(2)设点P的坐标是(x0,y0),线段PA的中点为M(x,y),由根据中点坐标公式,可得,整理得,点P(x0,y0)在椭圆上,可得,化简整理得,由此可得线段PA中点M的轨迹方程是【点评】本题给出椭圆满足的条件,求椭圆方程并求与之有关的一个轨迹方程,着重考查了椭圆的标准方程、简单几何性质和轨迹方程的求法等知识点,属于中档题23【答案】(1);(2)【解析】试题分析:(1)已知递

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论