宣汉县高中2018-2019学年上学期高二数学12月月考试题含解析_第1页
宣汉县高中2018-2019学年上学期高二数学12月月考试题含解析_第2页
宣汉县高中2018-2019学年上学期高二数学12月月考试题含解析_第3页
宣汉县高中2018-2019学年上学期高二数学12月月考试题含解析_第4页
宣汉县高中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

宣汉县高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 如果对定义在上的函数,对任意,均有成立,则称函数为“函数”.给出下列函数:;其中函数是“函数”的个数为( )A1 B2 C3 D 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大2 如图,程序框图的运算结果为( )A6B24C20D1203 某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S的值为( )A9.6B7.68C6.144D4.91524 已知集合A=y|y=x2+2x3,则有( )AABBBACA=BDAB=5 如图,在四棱锥PABCD中,PA平面ABCD,底面ABCD是菱形,AB=2,BAD=60()求证:BD平面PAC;()若PA=AB,求PB与AC所成角的余弦值;()当平面PBC与平面PDC垂直时,求PA的长【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离6 已知集合A=x|x2x20,B=x|1x1,则( )AABBBACA=BDAB=7 已知函数f(x)=m(x)2lnx(mR),g(x)=,若至少存在一个x01,e,使得f(x0)g(x0)成立,则实数m的范围是( )A(,B(,)C(,0D(,0)8 若动点分别在直线: 和:上移动,则中点所在直线方程为( )A B C D 9 487被7除的余数为a(0a7),则展开式中x3的系数为( )A4320B4320C20D2010不等式x22x+30的解集为( )Ax|x3或x1Bx|1x3Cx|3x1Dx|x3或x111中,“”是“”的( )A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.12已知某工程在很大程度上受当地年降水量的影响,施工期间的年降水量X(单位:mm)对工期延误天数Y的影响及相应的概率P如表所示:降水量XX100100X200200X300X300工期延误天数Y051530概率P0.40.20.10.3在降水量X至少是100的条件下,工期延误不超过15天的概率为( )A0.1B0.3C0.42D0.5二、填空题13已知数列中,函数在处取得极值,则_.14定义为与中值的较小者,则函数的取值范围是 15如图是甲、乙两位射击运动员的5次训练成绩(单位:环)的茎叶图,则成绩较为稳定(方差较小)的运动员是16已知椭圆+=1(ab0)上一点A关于原点的对称点为B,F为其左焦点,若AFBF,设ABF=,且,则该椭圆离心率e的取值范围为17阅读下图所示的程序框图,运行相应的程序,输出的的值等于_. 18对于集合M,定义函数对于两个集合A,B,定义集合AB=x|fA(x)fB(x)=1已知A=2,4,6,8,10,B=1,2,4,8,12,则用列举法写出集合AB的结果为三、解答题19已知函数f(x)=2|x2|+ax(xR)(1)当a=1时,求f(x)的最小值;(2)当f(x)有最小值时,求a的取值范围;(3)若函数h(x)=f(sinx)2存在零点,求a的取值范围20根据下列条件求方程(1)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,求抛物线的准线方程 (2)已知双曲线的离心率等于2,且与椭圆+=1有相同的焦点,求此双曲线标准方程21甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X,求X的分布列和数学期望22(本小题满分12分)已知且过点的直线与线段有公共点, 求直线的斜率的取值范围.23已知椭圆的离心率,且点在椭圆上()求椭圆的方程;()直线与椭圆交于、两点,且线段的垂直平分线经过点求(为坐标原点)面积的最大值24如图所示,已知+=1(a0)点A(1,)是离心率为的椭圆C:上的一点,斜率为的直线BD交椭圆C于B、D两点,且A、B、D三点不重合()求椭圆C的方程;()求ABD面积的最大值;()设直线AB、AD的斜率分别为k1,k2,试问:是否存在实数,使得k1+k2=0成立?若存在,求出的值;否则说明理由 宣汉县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】第2 【答案】 B【解析】解:循环体中S=Sn可知程序的功能是:计算并输出循环变量n的累乘值,循环变量n的初值为1,终值为4,累乘器S的初值为1,故输出S=1234=24,故选:B【点评】本题考查的知识点是程序框图,其中根据已知分析出程序的功能是解答的关键3 【答案】C【解析】解:由题意可知,设汽车x年后的价值为S,则S=15(120%)x,结合程序框图易得当n=4时,S=15(120%)4=6.144故选:C4 【答案】B【解析】解:y=x2+2x3=(x+1)24,y4则A=y|y4x0,x+2=2(当x=,即x=1时取“=”),B=y|y2,BA故选:B【点评】本题考查子集与真子集,求解本题,关键是将两个集合进行化简,由子集的定义得出两个集合之间的关系,再对比选项得出正确选项5 【答案】 【解析】解:(I)证明:因为四边形ABCD是菱形,所以ACBD,又因为PA平面ABCD,所以PABD,PAAC=A所以BD平面PAC(II)设ACBD=O,因为BAD=60,PA=AB=2,所以BO=1,AO=OC=,以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系Oxyz,则P(0,2),A(0,0),B(1,0,0),C(0,0)所以=(1,2),设PB与AC所成的角为,则cos=|(III)由(II)知,设,则设平面PBC的法向量=(x,y,z)则=0,所以令,平面PBC的法向量所以,同理平面PDC的法向量,因为平面PBC平面PDC,所以=0,即6+=0,解得t=,所以PA=【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力6 【答案】B【解析】解:由题意可得,A=x|1x2,B=x|1x1,在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=BA故选B7 【答案】 B【解析】解:由题意,不等式f(x)g(x)在1,e上有解,mx2lnx,即在1,e上有解,令h(x)=,则h(x)=,1xe,h(x)0,h(x)max=h(e)=,h(e)=,mm的取值范围是(,)故选:B【点评】本题主要考查极值的概念、利用导数研究函数的单调性等基础知识,解题时要认真审题,注意导数性质的合理运用8 【答案】【解析】考点:直线方程9 【答案】B 解析:解:487=(491)7=+1,487被7除的余数为a(0a7),a=6,展开式的通项为Tr+1=,令63r=3,可得r=3,展开式中x3的系数为=4320,故选:B.10【答案】D【解析】解:不等式x22x+30,变形为:x2+2x30,因式分解得:(x1)(x+3)0,可化为:或,解得:x3或x1,则原不等式的解集为x|x3或x1故选D11【答案】A.【解析】在中,故是充分必要条件,故选A.12【答案】D【解析】解:降水量X至少是100的条件下,工期延误不超过15天的概率P,设:降水量X至少是100为事件A,工期延误不超过15天的事件B,P(A)=0.6,P(AB)=0.3,P=P(B丨A)=0.5,故答案选:D二、填空题13【答案】【解析】考点:1、利用导数求函数极值;2、根据数列的递推公式求通项公式.【方法点晴】本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:累加法、累乘法、构造法,形如的递推数列求通项往往用构造法,利用待定系数法构造成的形式,再根据等比数例求出的通项,进而得出的通项公式.14【答案】【解析】试题分析:函数的图象如下图:观察上图可知:的取值范围是。考点:函数图象的应用。15【答案】甲 【解析】解:【解法一】甲的平均数是=(87+89+90+91+93)=90,方差是= (8790)2+(8990)2+(9090)2+(9190)2+(9390)2=4;乙的平均数是=(78+88+89+96+99)=90,方差是= (7890)2+(8890)2+(8990)2+(9690)2+(9990)2=53.2;,成绩较为稳定的是甲【解法二】根据茎叶图中的数据知,甲的5个数据分布在8793之间,分布相对集中些,方差小些;乙的5个数据分布在7899之间,分布相对分散些,方差大些;所以甲的成绩相对稳定些故答案为:甲【点评】本题考查了平均数与方差的计算与应用问题,是基础题目16【答案】,1 【解析】解:设点A(acos,bsin),则B(acos,bsin)(0);F(c,0);AFBF,=0,即(cacos,bsin)(c+acos,bsin)=0,故c2a2cos2b2sin2=0,cos2=2,故cos=,而|AF|=,|AB|=2c,而sin=,sin,+,即,解得,e1;故答案为:,1【点评】本题考查了圆锥曲线与直线的位置关系的应用及平面向量的应用,同时考查了三角函数的应用17【答案】 【解析】解析:本题考查程序框图中的循环结构第1次运行后,;第2次运行后,;第3次运行后,;第4次运行后,;第5次运行后,此时跳出循环,输出结果程序结束18【答案】1,6,10,12 【解析】解:要使fA(x)fB(x)=1,必有xx|xA且xBx|xB且xA=6,101,12=1,6,10,12,所以AB=1,6,10,12故答案为1,6,10,12【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题三、解答题19【答案】 【解析】解:(1)当a=1时,f(x)=2|x2|+x=(2分)所以,f(x)在(,2)递减,在2,+)递增,故最小值为f(2)=2; (4分)(2)f(x)=,(6分)要使函数f(x)有最小值,需,2a2,(8分)故a的取值范围为2,2(9分)(3)sinx1,1,f(sinx)=(a2)sinx+4,“h(x)=f(sinx)2=(a2)sinx+2存在零点”等价于“方程(a2)sinx+2=0有解”,亦即有解,(11分)解得a0或a4,(13分)a的取值范围为(,04,+)(14分)【点评】本题主要考查分段函数的应用,利用分段函数的表达式结合一元二次函数的性质,是解决本题的关键20【答案】 【解析】解:(1)易知椭圆+=1的右焦点为(2,0),由抛物线y2=2px的焦点(,0)与椭圆+=1的右焦点重合,可得p=4,可得抛物线y2=8x的准线方程为x=2(2)椭圆+=1的焦点为(4,0)和(4,0),可设双曲线的方程为=1(a,b0),由题意可得c=4,即a2+b2=16,又e=2,解得a=2,b=2,则双曲线的标准方程为=1【点评】本题考查圆锥曲线的方程和性质,主要是抛物线的准线方程和双曲线的方程的求法,注意运用待定系数法,考查运算能力,属于基础题21【答案】 【解析】解:(1)设事件A为“两手所取的球不同色”,则P(A)=1(2)依题意,X的可能取值为0,1,2,左手所取的两球颜色相同的概率为=,右手所取的两球颜色相同的概率为=P(X=0)=(1)(1)=;P(X=1)=;P(X=2)=X的分布列为:X 0 1 2PEX=0+1+2=【点评】本题考查概率的求法和求离散型随机变量的分布列和数学期望,是历年高考的必考题型解题时要认真审题,仔细解答,注意概率知识的灵活运用22【答案】或.【解析】试题分析:根据两点的斜率公式,求得,结合图形,即可求解直线的斜率的取值范围.试题解析:由已知,所以,由图可知,过点的直线与线段有公共点, 所以直线的斜率的取值范围是:或.考点:直线的斜率公式.23【答案】【解析】【知识点】圆锥曲线综合椭圆【试题解析】()由已知,点在椭圆上,解得所求椭圆方程为()设,的垂直平分线过点,的斜率存在当直线的斜率时,当且仅当时,当直线的斜率时, 设消去得:由 ,的中点为由直线的垂直关系有,化简得 由得又到直线的距离为,时,由,解得;即时,;综上:;24【答案】 【解析】解:(),a=c,b2=c2椭圆方程为+=1又点A(1,)在椭圆上,=1,c2=2a=2,b=,椭圆方程为=1 ()设直线BD方程为y=x+b,D(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论