江源区高中2018-2019学年上学期高三数学期末模拟试卷含答案_第1页
江源区高中2018-2019学年上学期高三数学期末模拟试卷含答案_第2页
江源区高中2018-2019学年上学期高三数学期末模拟试卷含答案_第3页
江源区高中2018-2019学年上学期高三数学期末模拟试卷含答案_第4页
江源区高中2018-2019学年上学期高三数学期末模拟试卷含答案_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江源区高中2018-2019学年上学期高三数学期末模拟试卷含答案班级_ 座号_ 姓名_ 分数_一、选择题1 已知f(x),g(x)都是R上的奇函数,f(x)0的解集为(a2,b),g(x)0的解集为(,),且a2,则f(x)g(x)0的解集为( )A(,a2)(a2,)B(,a2)(a2,)C(,a2)(a2,b)D(b,a2)(a2,)2 设函数f(x)在x0处可导,则等于( )Af(x0)Bf(x0)Cf(x0)Df(x0)3 如图,ABC所在平面上的点Pn(nN*)均满足PnAB与PnAC的面积比为3;1, =(2xn+1)(其中,xn是首项为1的正项数列),则x5等于( )A65B63C33D314 执行如图所示的程序框图,如果输入的t10,则输出的i( )A4 B5C6 D75 用反证法证明命题:“已知a、bN*,如果ab可被5整除,那么a、b 中至少有一个能被5整除”时,假设的内容应为( )Aa、b都能被5整除Ba、b都不能被5整除Ca、b不都能被5整除Da不能被5整除6 过点,的直线的斜率为,则( )A B C D7 已知函数()在定义域上为单调递增函数,则的最小值是( )A B C D 8 某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S的值为( )A9.6B7.68C6.144D4.91529 函数y=ax+2(a0且a1)图象一定过点( )A(0,1)B(0,3)C(1,0)D(3,0)10等比数列的前n项,前2n项,前3n项的和分别为A,B,C,则( )AB2=ACBA+C=2BCB(BA)=A(CA)DB(BA)=C(CA)11已知e是自然对数的底数,函数f(x)=ex+x2的零点为a,函数g(x)=lnx+x2的零点为b,则下列不等式中成立的是( )Aa1bBab1C1abDb1a12已知点F1,F2为椭圆的左右焦点,若椭圆上存在点P使得,则此椭圆的离心率的取值范围是( )A(0,)B(0,C(,D,1)二、填空题1317已知函数f(x)是定义在R上的奇函数,且它的图象关于直线x=1对称14设函数f(x)=,若a=1,则f(x)的最小值为;若f(x)恰有2个零点,则实数a的取值范围是15已知的面积为,三内角,的对边分别为,若,则取最大值时 16若函数f(x)=logax(其中a为常数,且a0,a1)满足f(2)f(3),则f(2x1)f(2x)的解集是17设某总体是由编号为的20个个体组成,利用下面的随机数表选取个个体,选取方法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为_1818 0792 4544 1716 5809 7983 86196206 7650 0310 5523 6405 0526 6238【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想18【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数,其中为自然对数的底数,则不等式的解集为_三、解答题19已知函数f(x)=(ax2+x1)ex,其中e是自然对数的底数,aR()若a=0,求曲线f(x)在点(1,f(1)处的切线方程;()若,求f(x)的单调区间;()若a=1,函数f(x)的图象与函数的图象仅有1个公共点,求实数m的取值范围 20已知全集U=R,集合A=x|x24x50,B=x|x4,C=x|xa()求A(UB); ()若AC,求a的取值范围21如图,已知椭圆C,点B坐标为(0,1),过点B的直线与椭圆C的另外一个交点为A,且线段AB的中点E在直线y=x上(1)求直线AB的方程;(2)若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,直线BM交椭圆C于另外一点Q证明:OMON为定值;证明:A、Q、N三点共线 22如图,三棱柱ABCA1B1C1中,侧面AA1C1C底面ABC,AA1=A1C=AC=2,AB=BC,且ABBC,O为AC中点()证明:A1O平面ABC;()求直线A1C与平面A1AB所成角的正弦值;()在BC1上是否存在一点E,使得OE平面A1AB,若不存在,说明理由;若存在,确定点E的位置 23已知函数f(x)=ex(x2+ax)在点(0,f(0)处的切线斜率为2()求实数a的值;()设g(x)=x(xt)(tR),若g(x)f(x)对x0,1恒成立,求t的取值范围;()已知数列an满足a1=1,an+1=(1+)an,求证:当n2,nN时 f()+f()+L+f()n()(e为自然对数的底数,e2.71828) 24已知,且(1)求sin,cos的值;(2)若,求sin的值江源区高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1 【答案】A【解析】解:f(x),g(x)都是R上的奇函数,f(x)0的解集为(a2,b),g(x)0的解集为(,),且a2,f(x)0的解集为(b,a2),g(x)0的解集为(,),则不等式f(x)g(x)0等价为或,即a2x或xa2,故不等式的解集为(,a2)(a2,),故选:A【点评】本题主要考查不等式的求解,根据函数奇偶性的对称性的性质求出f(x)0和g(x)0的解集是解决本题的关键2 【答案】C【解析】解: =f(x0),故选C3 【答案】 D【解析】解:由=(2xn+1),得+(2xn+1)=,设,以线段PnA、PnD作出图形如图,则,则,即xn+1=2xn+1,xn+1+1=2(xn+1),则xn+1构成以2为首项,以2为公比的等比数列,x5+1=224=32,则x5=31故选:D【点评】本题考查了平面向量的三角形法则,考查了数学转化思想方法,训练了利用构造法构造等比数列,考查了计算能力,属难题4 【答案】【解析】解析:选B.程序运行次序为第一次t5,i2;第二次t16,i3;第三次t8,i4;第四次t4,i5,故输出的i5.5 【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证命题“a,bN,如果ab可被5整除,那么a,b至少有1个能被5整除”的否定是“a,b都不能被5整除”故选:B6 【答案】【解析】考点:1.斜率;2.两点间距离.7 【答案】A【解析】试题分析:由题意知函数定义域为,因为函数()在定义域上为单调递增函数在定义域上恒成立,转化为在恒成立,故选A. 1考点:导数与函数的单调性8 【答案】C【解析】解:由题意可知,设汽车x年后的价值为S,则S=15(120%)x,结合程序框图易得当n=4时,S=15(120%)4=6.144故选:C9 【答案】B【解析】解:由于函数y=ax (a0且a1)图象一定过点(0,1),故函数y=ax+2(a0且a1)图象一定过点(0,3),故选B【点评】本题主要考查指数函数的单调性和特殊点,属于基础题10【答案】C【解析】解:若公比q=1,则B,C成立;故排除A,D;若公比q1,则A=Sn=,B=S2n=,C=S3n=,B(BA)=()=(1qn)(1qn)(1+qn)A(CA)=()=(1qn)(1qn)(1+qn);故B(BA)=A(CA);故选:C【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力11【答案】A【解析】解:由f(x)=ex+x2=0得ex=2x,由g(x)=lnx+x2=0得lnx=2x,作出计算y=ex,y=lnx,y=2x的图象如图:函数f(x)=ex+x2的零点为a,函数g(x)=lnx+x2的零点为b,y=ex与y=2x的交点的横坐标为a,y=lnx与y=2x交点的横坐标为b,由图象知a1b,故选:A【点评】本题主要考查函数与方程的应用,利用函数转化为两个图象的交点问题,结合数形结合是解决本题的关键12【答案】D【解析】解:由题意设=2x,则2x+x=2a,解得x=,故|=,|=,当P与两焦点F1,F2能构成三角形时,由余弦定理可得4c2=+2cosF1PF2,由cosF1PF2(1,1)可得4c2=cosF1PF2(,),即4c2,1,即e21,e1;当P与两焦点F1,F2共线时,可得a+c=2(ac),解得e=;综上可得此椭圆的离心率的取值范围为,1)故选:D【点评】本题考查椭圆的简单性质,涉及余弦定理和不等式的性质以及分类讨论的思想,属中档题二、填空题13【答案】 【解析】解:f(x)=axg(x)(a0且a1),=ax,又f(x)g(x)f(x)g(x),()=0,=ax是增函数,a1,+=a1+a1=,解得a=或a=2综上得a=2数列为2n数列的前n项和大于62,2+22+23+2n=2n+1262,即2n+164=26,n+16,解得n5n的最小值为6故答案为:6【点评】本题考查等比数列的前n项和公式的应用,巧妙地把指数函数、导数、数列融合在一起,是一道好题14【答案】a1或a2 【解析】解:当a=1时,f(x)=,当x1时,f(x)=2x1为增函数,f(x)1,当x1时,f(x)=4(x1)(x2)=4(x23x+2)=4(x)21,当1x时,函数单调递减,当x时,函数单调递增,故当x=时,f(x)min=f()=1,设h(x)=2xa,g(x)=4(xa)(x2a)若在x1时,h(x)=与x轴有一个交点,所以a0,并且当x=1时,h(1)=2a0,所以0a2,而函数g(x)=4(xa)(x2a)有一个交点,所以2a1,且a1,所以a1,若函数h(x)=2xa在x1时,与x轴没有交点,则函数g(x)=4(xa)(x2a)有两个交点,当a0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2a0时,即a2时,g(x)的两个交点满足x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是a1,或a215【答案】【解析】考点:1、余弦定理及三角形面积公式;2、两角和的正弦、余弦公式及特殊角的三角函数.1【方法点睛】本题主要考查余弦定理及三角形面积公式、两角和的正弦、余弦公式及特殊角的三角函数,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.一般来说 ,当条件中同时出现 及 、 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答,解三角形时三角形面积公式往往根据不同情况选用下列不同形式.16【答案】(1,2) 【解析】解:f(x)=logax(其中a为常数且a0,a1)满足f(2)f(3),0a1,x0,若f(2x1)f(2x),则,解得:1x2,故答案为:(1,2)【点评】本题考查了对数函数的性质,考查函数的单调性问题,是一道基础题17【答案】19【解析】由题意可得,选取的这6个个体分别为18,07,17,16,09,19,故选出的第6个个体编号为1918【答案】【解析】,即函数为奇函数,又恒成立,故函数在上单调递增,不等式可转化为,即,解得:,即不等式的解集为,故答案为.三、解答题19【答案】 【解析】解:()a=0,f(x)=(x1)ex,f(x)=ex+(x1)ex=xex,曲线f(x)在点(1,f(1)处的切线斜率为k=f(1)=e又f(1)=0,所求切线方程为y=e(x1),即exy4=0()f(x)=(2ax+1)ex+(ax2+x1)ex=ax2+(2a+1)xex=x(ax+2a+1)ex,若a=,f(x)=x2ex0,f(x)的单调递减区间为(,+),若a,当x或x0时,f(x)0;当x0时,f(x)0f(x)的单调递减区间为(,0,+);单调递增区间为,0()当a=1时,由()知,f(x)=(x2+x1)ex在(,1)上单调递减,在1,0单调递增,在0,+)上单调递减,f(x)在x=1处取得极小值f(1)=,在x=0处取得极大值f(0)=1,由,得g(x)=2x2+2x当x1或x0时,g(x)0;当1x0时,g(x)0g(x)在(,1上单调递增,在1,0单调递减,在0,+)上单调递增故g(x)在x=1处取得极大值,在x=0处取得极小值g(0)=m,数f(x)与函数g(x)的图象仅有1个公共点,g(1)f(1)或g(0)f(0),即.【点评】本题考查了曲线的切线方程问题,考查函数的单调性、极值问题,考查导数的应用,是一道中档题20【答案】 【解析】解:()全集U=R,B=x|x4,UB=x|x4,又A=x|x24x50=x|1x5,A(UB)=x|4x5;()A=x|1x5,C=x|xa,且AC,a的范围为a1【点评】此题考查了交、并、补集的混合运算,以及集合的包含关系判断及应用,熟练掌握各自的定义是解本题的关键21【答案】 【解析】(1)解:设点E(t,t),B(0,1),A(2t,2t+1),点A在椭圆C上,整理得:6t2+4t=0,解得t=或t=0(舍去),E(,),A(,),直线AB的方程为:x+2y+2=0;(2)证明:设P(x0,y0),则,直线AP方程为:y+=(x+),联立直线AP与直线y=x的方程,解得:xM=,直线BP的方程为:y+1=,联立直线BP与直线y=x的方程,解得:xN=,OMON=|xM|xN|=2|=|=|=|=设直线MB的方程为:y=kx1(其中k=),联立,整理得:(1+2k2)x24kx=0,xQ=,yQ=,kAN=1,kAQ=1,要证A、Q、N三点共线,只需证kAN=kAQ,即3xN+4=2k+2,将k=代入,即证:xMxN=,由的证明过程可知:|xM|xN|=,而xM与xN同号,xMxN=,即A、Q、N三点共线【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值、三点共线等问题,考查运算求解能力,注意解题方法的积累,属于中档题22【答案】 【解析】解:()证明:因为A1A=A1C,且O为AC的中点,所以A1OAC又由题意可知,平面AA1C1C平面ABC,交线为AC,且A1O平面AA1C1C,所以A1O平面ABC()如图,以O为原点,OB,OC,OA1所在直线分别为x,y,z轴建立空间直角坐标系由题意可知,A1A=A1C=AC=2,又AB=BC,ABBC,所以得:则有:设平面AA1B的一个法向量为n=(x,y,z),则有,令y=1,得所以因为直线A1C与平面A1AB所成角和向量n与所成锐角互余,所以()设,即,得所以,得,令OE平面A1AB,得,即1+2=0,得,即存在这样的点E,E为BC1的中点【点评】本小题主要考查空间线面关系、直线与平面所成的角、三角函数等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力23【答案】 【解析】解:()f(x)=ex(x2+ax),f(x)=ex(x2+ax)+ex(2x+a)=ex(x2+ax2xa);则由题意得f(0)=(a)=2,故a=2()由()知,f(x)=ex(x2+2x),由g(x)f(x)得,x(xt)ex(x2+2x),x0,1;当x=0时,该不等式成立;当x(0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论