石渠县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
石渠县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
石渠县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
石渠县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
石渠县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

石渠县高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知集合A=x|x2x20,B=x|1x1,则( )AABBBACA=BDAB=2 ,分别为双曲线(,)的左、右焦点,点在双曲线上,满足,若的内切圆半径与外接圆半径之比为,则该双曲线的离心率为( )A. B.C. D. 【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力3 函数f(x)=cos2xcos4x的最大值和最小正周期分别为( )A,B,C,D,4 (2015秋新乡校级期中)已知x+x1=3,则x2+x2等于( )A7B9C11D135 执行如图的程序框图,则输出S的值为( )A2016B2CD1 6 已知函数f(x)=ax+b(a0且a1)的定义域和值域都是1,0,则a+b=( )ABCD或7 某公园有P,Q,R三只小船,P船最多可乘3人,Q船最多可乘2人,R船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( )A36种B18种C27种D24种8 若如图程序执行的结果是10,则输入的x的值是( ) A0B10C10D10或109 执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k的最大值为( )A4B5C6D7 10冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示杂质高杂质低旧设备37121新设备22202根据以上数据,则( )A含杂质的高低与设备改造有关B含杂质的高低与设备改造无关C设备是否改造决定含杂质的高低D以上答案都不对11在三棱柱中,已知平面,此三棱 柱各个顶点都在一个球面上,则球的体积为( ) A B C. D12若直线y=kxk交抛物线y2=4x于A,B两点,且线段AB中点到y轴的距离为3,则|AB|=( )A12B10C8D6二、填空题13等差数列中,公差,则使前项和取得最大值的自然数是_.14已知数列an满足an+1=e+an(nN*,e=2.71828)且a3=4e,则a2015=15在数列中,则实数a=,b=16如图所示,圆中,弦的长度为,则的值为_【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想17观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49照此规律,第n个等式为18抽样调查表明,某校高三学生成绩(总分750分)X近似服从正态分布,平均成绩为500分已知P(400X450)=0.3,则P(550X600)=三、解答题19在长方体ABCDA1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点()证明:ACD1E;()求DE与平面AD1E所成角的正弦值;()在棱AD上是否存在一点P,使得BP平面AD1E?若存在,求DP的长;若不存在,说明理由20已知函数f(x)=x1+(aR,e为自然对数的底数)()若曲线y=f(x)在点(1,f(1)处的切线平行于x轴,求a的值;()求函数f(x)的极值;()当a=1的值时,若直线l:y=kx1与曲线y=f(x)没有公共点,求k的最大值 21为了预防流感,某学校对教室用药熏消毒法进行消毒已知药物释放过程中,室内每立方米空气中的含药量(毫克)与时间(小时)成正比;药物释放完毕后,与的函数关系式为(为常数),如图所示据图中提供的信息,回答下列问题:(1)写出从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式;(2)据测定,当空气中每立方米的含药量降低到毫克以下时,学生方可进教室。那么药物释放开始,至少需要经过多少小时后,学生才能回到教室? 22在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人,女性中有43人主要的休闲方式是看电视,其余人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,其余人主要的休闲方式是运动(1)根据以上数据建立一个22的列联表;(2)能否在犯错误的概率不超过0.01的前提下,认为休闲方式与性别有关系独立性检验观察值计算公式,独立性检验临界值表:P(K2k0)0.500.250.150.050.0250.010.005k00.4551.3232.0723.8415.0246.6357.87923(本小题满分12分)如图,四棱锥中,底面为矩形,平面,是的中点.(1)证明:平面;(2)设,三棱锥的体积,求到平面的距离.11124甲、乙两位选手为为备战我市即将举办的“推广妈祖文化印象莆田”知识竞赛活动,进行针对性训练,近8次的训练成绩如下(单位:分):甲8381937978848894乙8789897774788898()依据上述数据,从平均水平和发挥的稳定程度考虑,你认为应派哪位选手参加?并说明理由;()本次竞赛设置A、B两问题,规定:问题A的得分不低于80分时答题成功,否则答题失败,答题成功可获得价值100元的奖品,问题B的得分不低于90分时答题成功,否则答题失败,答题成功可获得价值300元的奖品答题顺序可自由选择,但答题失败则终止答题选手答题问题A,B成功与否互不影响,且以训练成绩作为样本,将样本频率视为概率,请问在(I)中被选中的选手应选择何种答题顺序,使获得的奖品价值更高?并说明理由石渠县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:由题意可得,A=x|1x2,B=x|1x1,在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=BA故选B2 【答案】D 【解析】,即为直角三角形,则,.所以内切圆半径,外接圆半径.由题意,得,整理,得,双曲线的离心率,故选D.3 【答案】B【解析】解:y=cos2xcos4x=cos2x(1cos2x)=cos2xsin2x=sin22x=,故它的周期为=,最大值为=故选:B4 【答案】A【解析】解:x+x1=3,则x2+x2=(x+x1)22=322=7故选:A【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题5 【答案】B【解析】解:模拟执行程序框图,可得s=2,k=0满足条件k2016,s=1,k=1满足条件k2016,s=,k=2满足条件k2016,s=2k=3满足条件k2016,s=1,k=4满足条件k2016,s=,k=5观察规律可知,s的取值以3为周期,由2015=3*671+2,有满足条件k2016,s=2,k=2016不满足条件k2016,退出循环,输出s的值为2故选:B【点评】本题主要考查了程序框图和算法,依次写出前几次循环得到的s,k的值,观察规律得到s的取值以3为周期是解题的关键,属于基本知识的考查6 【答案】B【解析】解:当a1时,f(x)单调递增,有f(1)=+b=1,f(0)=1+b=0,无解;当0a1时,f(x)单调递减,有f(1)=0,f(0)=1+b=1,解得a=,b=2;所以a+b=;故选:B7 【答案】 C【解析】排列、组合及简单计数问题【专题】计算题;分类讨论【分析】根据题意,分4种情况讨论,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,P船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,P船乘1个大人和2个小孩共3人,Q船乘2个大人,分别求出每种情况下的乘船方法,进而由分类计数原理计算可得答案【解答】解:分4种情况讨论,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,有A33=6种情况,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,有A33A22=12种情况,P船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,有C322=6种情况,P船乘1个大人和2个小孩共3人,Q船乘2个大人,有C31=3种情况,则共有6+12+6+3=27种乘船方法,故选C【点评】本题考查排列、组合公式与分类计数原理的应用,关键是分析得出全部的可能情况与正确运用排列、组合公式8 【答案】D【解析】解:模拟执行程序,可得程序的功能是计算并输出y=的值,当x0,时x=10,解得:x=10当x0,时x=10,解得:x=10故选:D9 【答案】A 解析:模拟执行程序框图,可得S=0,n=0满足条,0k,S=3,n=1满足条件1k,S=7,n=2满足条件2k,S=13,n=3满足条件3k,S=23,n=4满足条件4k,S=41,n=5满足条件5k,S=75,n=6若使输出的结果S不大于50,则输入的整数k不满足条件5k,即k5,则输入的整数k的最大值为4故选:10【答案】 A【解析】独立性检验的应用【专题】计算题;概率与统计【分析】根据所给的数据写出列联表,把列联表的数据代入观测值的公式,求出两个变量之间的观测值,把观测值同临界值表中的数据进行比较,得到有99%的把握认为含杂质的高低与设备是否改造是有关的【解答】解:由已知数据得到如下22列联表杂质高杂质低合计旧设备37121158新设备22202224合计59323382由公式2=13.11,由于13.116.635,故有99%的把握认为含杂质的高低与设备是否改造是有关的【点评】本题考查独立性检验,考查写出列联表,这是一个基础题11【答案】A【解析】 考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.12【答案】C【解析】解:直线y=kxk恒过(1,0),恰好是抛物线y2=4x的焦点坐标,设A(x1,y1) B(x2,y2) 抛物y2=4x的线准线x=1,线段AB中点到y轴的距离为3,x1+x2=6,|AB|=|AF|+|BF|=x1+x2+2=8,故选:C【点评】本题的考点是函数的最值及其几何意义,主要解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离二、填空题13【答案】或【解析】试题分析:因为,且,所以,所以,所以,所以,所以,所以取得最大值时的自然数是或考点:等差数列的性质【方法点晴】本题主要考查了等差数列的性质,其中解答中涉及到等差数列的通项公式以及数列的单调性等知识点的应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据数列的单调性,得出,所以是解答的关键,同时结论中自然数是或是结论的一个易错点14【答案】2016 【解析】解:由an+1=e+an,得an+1an=e,数列an是以e为公差的等差数列,则a1=a32e=4e2e=2e,a2015=a1+2014e=2e+2014e=2016e故答案为:2016e【点评】本题考查了数列递推式,考查了等差数列的通项公式,是基础题15【答案】a=,b= 【解析】解:由5,10,17,ab,37知,ab=26,由3,8,a+b,24,35知,a+b=15,解得,a=,b=;故答案为:,【点评】本题考查了数列的性质的判断与归纳法的应用16【答案】17【答案】n+(n+1)+(n+2)+(3n2)=(2n1)2 【解析】解:观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49等号右边是12,32,52,72第n个应该是(2n1)2左边的式子的项数与右边的底数一致,每一行都是从这一个行数的数字开始相加的,照此规律,第n个等式为n+(n+1)+(n+2)+(3n2)=(2n1)2,故答案为:n+(n+1)+(n+2)+(3n2)=(2n1)2【点评】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题18【答案】0.3【解析】离散型随机变量的期望与方差【专题】计算题;概率与统计【分析】确定正态分布曲线的对称轴为x=500,根据对称性,可得P(550600)【解答】解:某校高三学生成绩(总分750分)近似服从正态分布,平均成绩为500分,正态分布曲线的对称轴为x=500,P(400450)=0.3,根据对称性,可得P(550600)=0.3故答案为:0.3【点评】本题考查正态分布曲线的特点及曲线所表示的意义,正确运用正态分布曲线的对称性是关键三、解答题19【答案】 【解析】()证明:连接BDABCDA1B1C1D1是长方体,D1D平面ABCD,又AC平面ABCD,D1DAC1分在长方形ABCD中,AB=BC,BDAC2分又BDD1D=D,AC平面BB1D1D,3分而D1E平面BB1D1D,ACD1E4分()解:如图建立空间直角坐标系Dxyz,则A(1,0,0),D1(0,0,2),E(1,1,1),B(1,1,0),5分设平面AD1E的法向量为,则,即令z=1,则7分 8分DE与平面AD1E所成角的正弦值为9分()解:假设在棱AD上存在一点P,使得BP平面AD1E设P的坐标为(t,0,0)(0t1),则BP平面AD1E,即,2(t1)+1=0,解得,12分在棱AD上存在一点P,使得BP平面AD1E,此时DP的长13分20【答案】 【解析】解:()由f(x)=x1+,得f(x)=1,又曲线y=f(x)在点(1,f(1)处的切线平行于x轴,f(1)=0,即1=0,解得a=e()f(x)=1,当a0时,f(x)0,f(x)为(,+)上的增函数,所以f(x)无极值;当a0时,令f(x)=0,得ex=a,x=lna,x(,lna),f(x)0;x(lna,+),f(x)0;f(x)在(,lna)上单调递减,在(lna,+)上单调递增,故f(x)在x=lna处取到极小值,且极小值为f(lna)=lna,无极大值综上,当a0时,f(x)无极值;当a0时,f(x)在x=lna处取到极小值lna,无极大值()当a=1时,f(x)=x1+,令g(x)=f(x)(kx1)=(1k)x+,则直线l:y=kx1与曲线y=f(x)没有公共点,等价于方程g(x)=0在R上没有实数解假设k1,此时g(0)=10,g()=1+0,又函数g(x)的图象连续不断,由零点存在定理可知g(x)=0在R上至少有一解,与“方程g(x)=0在R上没有实数解”矛盾,故k1又k=1时,g(x)=0,知方程g(x)=0在R上没有实数解,所以k的最大值为1 21【答案】(1);(2)至少经过0.6小时才能回到教室。【解析】试题分析:(1)由题意:当时,y与t成正比,观察图象过点,所以可以求出解析式为,当时,y与t的函数关系为,观察图象过点,代入得:,所以,则解析式为,所以含药量y与t的函数关系为:;(2)观察图象可知,药物含量在段时间内逐渐递增,在时刻达到最大值1毫克,在时刻后,药物含量开始逐渐减少,当药物含量到0.25毫克时,有,所以,所以,所以至少要经过0.6小时,才能回到教室。试题解析:(1)依题意,当,可设y与t的函数关系式为ykt,易求得k10, y10t, 含药量y与时间t的函数关系式为(2)由图像可知y与t的关系是先增后减的,在时,y从0增加到1; 然后时,y从1开始递减。 ,解得t0.6, 至少经过0.6小时,学生才能回到教室 考点:1.分段函数;2.指数函数;3.函数的实际应用。22【答案】 【解析】解:(1)看电视运动合计男性213354女性432770合计6460124(2)所以不能在犯错误的概率不超过0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论