




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
铁力市高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 中,“”是“”的( )A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.2 设定义域为(0,+)的单调函数f(x),对任意的x(0,+),都有ff(x)lnx=e+1,若x0是方程f(x)f(x)=e的一个解,则x0可能存在的区间是( )A(0,1)B(e1,1)C(0,e1)D(1,e)3 已知圆C:x2+y22x=1,直线l:y=k(x1)+1,则l与C的位置关系是()A一定相离B一定相切C相交且一定不过圆心D相交且可能过圆心4 下列函数中,与函数的奇偶性、单调性相同的是( )A B C D5 在下面程序框图中,输入,则输出的的值是( )A B C D【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是把正整数除以4后按余数分类.6 已知x,y满足约束条件,使z=ax+y取得最小值的最优解有无数个,则a的值为( )A3B3C1D17 (+)2n(nN*)展开式中只有第6项系数最大,则其常数项为( )A120B210C252D458 已知在ABC中,a=,b=,B=60,那么角C等于( )A135B90C45D759 正方体的内切球与外接球的半径之比为( )ABCD10己知y=f(x)是定义在R上的奇函数,当x0时,f(x)=x+2,那么不等式2f(x)10的解集是( )AB或CD或11设平面与平面相交于直线m,直线a在平面内,直线b在平面内,且bm,则“”是“ab”的( )A必要不充分条件B充分不必要条件C充分必要条件D既不充分也不必要条件12已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x(0,2)时,f(x)=2x2,则f(2015)=( )A2B2C8D8二、填空题13已知函数f(x)=,若关于x的方程f(x)=k有三个不同的实根,则实数k的取值范围是14下列说法中,正确的是(填序号)若集合A=x|kx2+4x+4=0中只有一个元素,则k=1;在同一平面直角坐标系中,y=2x与y=2x的图象关于y轴对称;y=()x是增函数;定义在R上的奇函数f(x)有f(x)f(x)015函数f(x)=loga(x1)+2(a0且a1)过定点A,则点A的坐标为16已知直线l的参数方程是(t为参数),曲线C的极坐标方程是=8cos+6sin,则曲线C上到直线l的距离为4的点个数有个17设Sn是数列an的前n项和,且a1=1, =Sn则数列an的通项公式an=18已知定义域为(0,+)的函数f(x)满足:(1)对任意x(0,+),恒有f(2x)=2f(x)成立;(2)当x(1,2时,f(x)=2x给出如下结论:对任意mZ,有f(2m)=0;函数f(x)的值域为0,+);存在nZ,使得f(2n+1)=9;“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在kZ,使得(a,b)(2k,2k+1)”;其中所有正确结论的序号是三、解答题19某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x(个)2345加工的时间y(小时)2.5344.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程=x+,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?参考公式:回归直线=bx+a,其中b=,a=b20已知函数,(1)当时,求函数的单调区间;(2)若关于的不等式在上有解,求实数的取值范围21(本小题满分12分)已知且过点的直线与线段有公共点, 求直线的斜率的取值范围.22【淮安市淮海中学2018届高三上第一次调研】已知函数.(1)当时,求满足的的取值;(2)若函数是定义在上的奇函数存在,不等式有解,求的取值范围;若函数满足,若对任意,不等式恒成立,求实数的最大值.23已知数列an的首项为1,前n项和Sn满足=+1(n2)()求Sn与数列an的通项公式;()设bn=(nN*),求使不等式b1+b2+bn成立的最小正整数n24如图,四边形ABCD内接于O,过点A作O的切钱EP交CB 的延长线于P,己知PAB=25(1)若BC是O的直径,求D的大小;(2)若DAE=25,求证:DA2=DCBP 铁力市高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A.【解析】在中,故是充分必要条件,故选A.2 【答案】 D【解析】解:由题意知:f(x)lnx为常数,令f(x)lnx=k(常数),则f(x)=lnx+k由ff(x)lnx=e+1,得f(k)=e+1,又f(k)=lnk+k=e+1,所以f(x)=lnx+e,f(x)=,x0f(x)f(x)=lnx+e,令g(x)=lnx+e=lnx,x(0,+)可判断:g(x)=lnx,x(0,+)上单调递增,g(1)=1,g(e)=10,x0(1,e),g(x0)=0,x0是方程f(x)f(x)=e的一个解,则x0可能存在的区间是(1,e)故选:D【点评】本题考查了函数的单调性,零点的判断,构造思想,属于中档题3 【答案】C【解析】【分析】将圆C方程化为标准方程,找出圆心C坐标与半径r,利用点到直线的距离公式表示出圆心到直线的距离d,与r比较大小即可得到结果【解答】解:圆C方程化为标准方程得:(x1)2+y2=2,圆心C(1,0),半径r=,1,圆心到直线l的距离d=r,且圆心(1,0)不在直线l上,直线l与圆相交且一定不过圆心故选C4 【答案】A【解析】试题分析:所以函数为奇函数,且为增函数.B为偶函数,C定义域与不相同,D为非奇非偶函数,故选A.考点:函数的单调性与奇偶性5 【答案】B6 【答案】D【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由z=ax+y,得y=ax+z,若a=0,此时y=z,此时函数y=z只在B处取得最小值,不满足条件若a0,则目标函数的斜率k=a0平移直线y=ax+z,由图象可知当直线y=ax+z和直线x+y=1平行时,此时目标函数取得最小值时最优解有无数多个,此时a=1,即a=1若a0,则目标函数的斜率k=a0平移直线y=ax+z,由图象可知当直线y=ax+z,此时目标函数只在C处取得最小值,不满足条件综上a=1故选:D【点评】本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用z的几何意义是解决本题的关键注意要对a进行分类讨论7 【答案】 B【解析】【专题】二项式定理【分析】由已知得到展开式的通项,得到第6项系数,根据二项展开式的系数性质得到n,可求常数项【解答】解:由已知(+)2n(nN*)展开式中只有第6项系数为最大,所以展开式有11项,所以2n=10,即n=5,又展开式的通项为=,令5=0解得k=6,所以展开式的常数项为=210;故选:B【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出n,利用通项求特征项8 【答案】D【解析】解:由正弦定理知=,sinA=,ab,AB,A=45,C=180AB=75,故选:D9 【答案】C【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长,设正方体的棱长为:2a,所以内切球的半径为:a;外接球的直径为2a,半径为: a,所以,正方体的内切球与外接球的半径之比为:故选C10【答案】B【解析】解:因为y=f(x)为奇函数,所以当x0时,x0,根据题意得:f(x)=f(x)=x+2,即f(x)=x2,当x0时,f(x)=x+2,代入所求不等式得:2(x+2)10,即2x3,解得x,则原不等式的解集为x;当x0时,f(x)=x2,代入所求的不等式得:2(x2)10,即2x5,解得x,则原不等式的解集为0x,综上,所求不等式的解集为x|x或0x故选B11【答案】B【解析】解:bm,当,则由面面垂直的性质可得ab成立,若ab,则不一定成立,故“”是“ab”的充分不必要条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,利用线面垂直的性质是解决本题的关键12【答案】B【解析】解:f(x+4)=f(x),f(2015)=f(50441)=f(1),又f(x)在R上是奇函数,f(1)=f(1)=2故选B【点评】本题考查了函数的奇偶性与周期性的应用,属于基础题二、填空题13【答案】(0,1) 【解析】解:画出函数f(x)的图象,如图示:令y=k,由图象可以读出:0k1时,y=k和f(x)有3个交点,即方程f(x)=k有三个不同的实根,故答案为(0,1)【点评】本题考查根的存在性问题,渗透了数形结合思想,是一道基础题14【答案】 【解析】解:若集合A=x|kx2+4x+4=0中只有一个元素,则k=1或k=0,故错误;在同一平面直角坐标系中,y=2x与y=2x的图象关于y轴对称,故正确;y=()x是减函数,故错误;定义在R上的奇函数f(x)有f(x)f(x)0,故正确故答案为:【点评】本题以命题的真假判断与应用为载体,考查了集合,指数函数的,奇函数的图象和性质,难度中档15【答案】(2,2) 【解析】解:loga1=0,当x1=1,即x=2时,y=2,则函数y=loga(x1)+2的图象恒过定点 (2,2)故答案为:(2,2)【点评】本题考查对数函数的性质和特殊点,主要利用loga1=0,属于基础题16【答案】2 【解析】解:由,消去t得:2xy+5=0,由=8cos+6sin,得2=8cos+6sin,即x2+y2=8x+6y,化为标准式得(x4)2+(y3)2=25,即C是以(4,3)为圆心,5为半径的圆又圆心到直线l的距离是,故曲线C上到直线l的距离为4的点有2个,故答案为:2【点评】本题考查了参数方程化普通方程,考查了极坐标方程化直角坐标方程,考查了点到直线的距离公式的应用,是基础题17【答案】 【解析】解:Sn是数列an的前n项和,且a1=1, =Sn,Sn+1Sn=Sn+1Sn,=1, =1,是首项为1,公差为1的等差数列,=1+(n1)(1)=nSn=,n=1时,a1=S1=1,n2时,an=SnSn1=+=an=故答案为:18【答案】 【解析】解:x(1,2时,f(x)=2xf(2)=0f(1)=f(2)=0f(2x)=2f(x),f(2kx)=2kf(x)f(2m)=f(22m1)=2f(2m1)=2m1f(2)=0,故正确;设x(2,4时,则x(1,2,f(x)=2f()=4x0若x(4,8时,则x(2,4,f(x)=2f()=8x0一般地当x(2m,2m+1),则(1,2,f(x)=2m+1x0,从而f(x)0,+),故正确;由知当x(2m,2m+1),f(x)=2m+1x0,f(2n+1)=2n+12n1=2n1,假设存在n使f(2n+1)=9,即2n1=9,2n=10,nZ,2n=10不成立,故错误;由知当x(2k,2k+1)时,f(x)=2k+1x单调递减,为减函数,若(a,b)(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确故答案为:三、解答题19【答案】 【解析】解:(1)作出散点图如下:(3分)(2)=(2+3+4+5)=3.5, =(2.5+3+4+4.5)=3.5,(5分)=54, xiyi=52.5b=0.7,a=3.50.73.5=1.05,所求线性回归方程为:y=0.7x+1.05(10分)(3)当x=10代入回归直线方程,得y=0.710+1.05=8.05(小时)加工10个零件大约需要8.05个小时(12分)【点评】本题考查线性回归方程的求法和应用,考查学生的计算能力,属于中档题20【答案】()的单调递增区间是和,单调递减区间为;()【解析】试题分析:() 时,利用导数与单调性的关系,对函数求导,并与零作比较可得函数的单调区间;() 对函数求导,对参数分类讨论,利用函数的单调性求函数的最小值,使最小值小于或等于零,可得的取值范围试题解析:(1)当时,所以,由,得或,所以函数的单调递减区间为(2)要使在上有解,只要在区间上的最小值小于等于0因为,令,得,1 考点:导数与函数的单调性;分类讨论思想 21【答案】或.【解析】试题分析:根据两点的斜率公式,求得,结合图形,即可求解直线的斜率的取值范围.试题解析:由已知,所以,由图可知,过点的直线与线段有公共点, 所以直线的斜率的取值范围是:或.考点:直线的斜率公式.22【答案】(1)(2),6【解析】试题解析:(1)由题意,化简得解得,所以(2)因为是奇函数,所以,所以化简并变形得:要使上式对任意的成立,则解得:,因为的定义域是,所以舍去所以,所以对任意有:因为,所以,所以,因此在R上递减因为,所以,即在时有解所以,解得:,所以的取值范围为因为,所以即所以不等式恒成立,即,即:恒成立令,则在时恒成立令,时,所以在上单调递减时,所以在上单调递增所以,所以所以,实数m的最大值为6 考点:利用函数性质解不等式,不等式恒成立问题【思路点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题。23【答案】 【解析】解:()因为=+1(n2),所以是首项为1,公差为1的等差数列,则=1+(n1)1=n,从而
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电网调度知识培训心得
- note英语写作考试及答案
- 青海省海东市2022-2023学年九年级上学期线上期中考试化学试题(含答案)
- 电磁铁电磁继电器课件
- 高精密机床基础知识培训课件
- 北京林业大学考试题库及答案
- S-Anabasine-d4-生命科学试剂-MCE
- Cariprazine-d8-1-RGH-188-d-sub-8-sub-生命科学试剂-MCE
- 北京安管人员考试试题及答案
- 物理的中考试题及答案
- 《生物经济学》课程教学大纲
- 《带状疱疹》课件
- 神经康复学教案
- 2025年中考作文试题预测及范文
- 2021年秋新教科版六年级上册科学全册表格式教案
- 2025高二政治开学第一课《政好有你 再创佳绩》
- 碳谱定量分析方法
- 机械购销合同电子版
- 2024-2034年中国女式情趣内衣市场发展现状及战略咨询报告
- 五星级酒店总投资估算表及其投资占比
- 【小学体育教学中学生自主学习研究-以S区小学为例(附量表)21000字(论文)】
评论
0/150
提交评论