




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
带岭区高中2018-2019学年上学期高三数学期末模拟试卷含答案班级_ 座号_ 姓名_ 分数_一、选择题1 某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则其侧视图的面积是( )ABC1D2 复数z=(其中i是虚数单位),则z的共轭复数=( )AiBiC +iD +i3 在下列区间中,函数f(x)=()xx的零点所在的区间为( )A(0,1)B(1,2)C(2,3 )D(3,4)4 双曲线的左右焦点分别为,过的直线与双曲线的右支交于两点,若是以为直角顶点的等腰直角三角形,则( )A B C D5 已知抛物线C:的焦点为F,准线为,P是上一点,Q是直线PF与C的一个交点,若,则( ) A6B3CD第卷(非选择题,共100分)6 数列1,3,6,10,的一个通项公式是( )A B C D7 已知平面向量=(1,2),=(2,m),且,则=( )A(5,10)B(4,8)C(3,6)D(2,4)8 数列an是等差数列,若a1+1,a3+2,a5+3构成公比为q的等比数列,则q=( )A1B2C3D49 设曲线在点处的切线的斜率为,则函数的部分图象可以为( )A B C. D10已知两点M(1,),N(4,),给出下列曲线方程:4x+2y1=0; x2+y2=3; +y2=1; y2=1在曲线上存在点P满足|MP|=|NP|的所有曲线方程是( )ABCD11设是等差数列的前项和,若,则( )A1 B2 C3 D412若点O和点F(2,0)分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为( )ABCD二、填空题13某工厂的某种型号的机器的使用年限x和所支出的维修费用y(万元)的统计资料如表:x681012y2356根据上表数据可得y与x之间的线性回归方程=0.7x+,据此模型估计,该机器使用年限为14年时的维修费用约为万元14已知等比数列an是递增数列,Sn是an的前n项和若a1,a3是方程x25x+4=0的两个根,则S6= 15函数在区间上递减,则实数的取值范围是 16函数的单调递增区间是17已知i是虚数单位,且满足i2=1,aR,复数z=(a2i)(1+i)在复平面内对应的点为M,则“a=1”是“点M在第四象限”的条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”)18如图所示是y=f(x)的导函数的图象,有下列四个命题:f(x)在(3,1)上是增函数;x=1是f(x)的极小值点;f(x)在(2,4)上是减函数,在(1,2)上是增函数;x=2是f(x)的极小值点其中真命题为(填写所有真命题的序号)三、解答题19(本小题满分12分)如图(1),在三角形中,为其中位线,且,若沿将三角形折起,使,构成四棱锥,且.(1)求证:平面 平面;(2)当 异面直线与所成的角为时,求折起的角度.20【南京市2018届高三数学上学期期初学情调研】已知函数f(x)2x33(a+1)x26ax,aR()曲线yf(x)在x0处的切线的斜率为3,求a的值;()若对于任意x(0,+),f(x)f(x)12lnx恒成立,求a的取值范围;()若a1,设函数f(x)在区间1,2上的最大值、最小值分别为M(a)、m(a),记h(a)M(a)m(a),求h(a)的最小值21已知函数f(x)=x2mx在1,+)上是单调函数(1)求实数m的取值范围;(2)设向量,求满足不等式的的取值范围22已知函数f(x)=(1)求f(f(2);(2)画出函数f(x)的图象,根据图象写出函数的单调增区间并求出函数f(x)在区间(4,0)上的值域23已知抛物线C:x2=2y的焦点为F()设抛物线上任一点P(m,n)求证:以P为切点与抛物线相切的方程是mx=y+n;()若过动点M(x0,0)(x00)的直线l与抛物线C相切,试判断直线MF与直线l的位置关系,并予以证明24已知函数f(x)=a,(1)若a=1,求f(0)的值;(2)探究f(x)的单调性,并证明你的结论;(3)若函数f(x)为奇函数,判断|f(ax)|与f(2)的大小带岭区高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1 【答案】B【解析】解:由三视图知几何体的直观图是半个圆锥,又正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,半圆锥的底面半径为1,高为,即半圆锥的侧视图是一个两直角边长分别为1和的直角三角形,故侧视图的面积是,故选:B【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状2 【答案】C【解析】解:z=,=故选:C【点评】本题考查了复数代数形式的乘除运算,是基础题3 【答案】A【解析】解:函数f(x)=()xx,可得f(0)=10,f(1)=0f(2)=0,函数的零点在(0,1)故选:A4 【答案】C【解析】试题分析:设,则,因为,所以,解得,所以,在直角三角形中,由勾股定理得,因为,所以,所以.考点:直线与圆锥曲线位置关系【思路点晴】本题考查直线与圆锥曲线位置关系,考查双曲线的定义,考查解三角形.由于题目给定的条件是等腰直角三角形,就可以利用等腰直角三角形的几何性质来解题.对于圆锥曲线的小题,往往要考查圆锥曲线的定义,本题考查双曲线的定义:动点到两个定点距离之差的绝对值为常数.利用定义和解直角三角形建立方程,从而求出离心率的平方.111.Com5 【答案】A 解析:抛物线C:的焦点为F(0,2),准线为:y=2,设P(a,2),B(m,),则=(a,4),=(m,2),2m=a,4=4,m2=32,由抛物线的定义可得|QF|=+2=4+2=6故选A6 【答案】C【解析】试题分析:可采用排除法,令和,验证选项,只有,使得,故选C考点:数列的通项公式7 【答案】B【解析】解:排除法:横坐标为2+(6)=4,故选B8 【答案】A【解析】解:设等差数列an的公差为d,由a1+1,a3+2,a5+3构成等比数列,得:(a3+2)2=(a1+1)(a5+3),整理得:a32+4a3+4=a1a5+3a1+a5+3即(a1+2d)2+4(a1+2d)+4=a1(a1+4d)+4a1+4d+3化简得:(2d+1)2=0,即d=q=1故选:A【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题9 【答案】A 【解析】试题分析:,为奇函数,排除B,D,令时,故选A. 1考点:1、函数的图象及性质;2、选择题“特殊值”法.10【答案】 D【解析】解:要使这些曲线上存在点P满足|MP|=|NP|,需曲线与MN的垂直平分线相交MN的中点坐标为(,0),MN斜率为=MN的垂直平分线为y=2(x+),4x+2y1=0与y=2(x+),斜率相同,两直线平行,可知两直线无交点,进而可知不符合题意x2+y2=3与y=2(x+),联立,消去y得5x212x+6=0,=1444560,可知中的曲线与MN的垂直平分线有交点,中的方程与y=2(x+),联立,消去y得9x224x16=0,0可知中的曲线与MN的垂直平分线有交点,中的方程与y=2(x+),联立,消去y得7x224x+20=0,0可知中的曲线与MN的垂直平分线有交点,故选D11【答案】A【解析】1111试题分析:故选A111考点:等差数列的前项和12【答案】B【解析】解:因为F(2,0)是已知双曲线的左焦点,所以a2+1=4,即a2=3,所以双曲线方程为,设点P(x0,y0),则有,解得,因为,所以=x0(x0+2)+=,此二次函数对应的抛物线的对称轴为,因为,所以当时,取得最小值=,故的取值范围是,故选B【点评】本题考查待定系数法求双曲线方程,考查平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程度以及知识的综合应用能力、运算能力二、填空题13【答案】7.5 【解析】解:由表格可知=9, =4,这组数据的样本中心点是(9,4),根据样本中心点在线性回归直线=0.7x+上,4=0.79+,=2.3,这组数据对应的线性回归方程是=0.7x2.3,x=14,=7.5,故答案为:7.5【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a的值,这样使得题目简化,注意运算不要出错14【答案】63【解析】解:解方程x25x+4=0,得x1=1,x2=4因为数列an是递增数列,且a1,a3是方程x25x+4=0的两个根,所以a1=1,a3=4设等比数列an的公比为q,则,所以q=2则故答案为63【点评】本题考查了等比数列的通项公式,考查了等比数列的前n项和,是基础的计算题15【答案】【解析】试题分析:函数图象开口向上,对称轴为,函数在区间上递减,所以.考点:二次函数图象与性质16【答案】2,3) 【解析】解:令t=3+4xx20,求得1x3,则y=,本题即求函数t在(1,3)上的减区间利用二次函数的性质可得函数t在(1,3)上的减区间为2,3),故答案为:2,3)17【答案】充分不必要 【解析】解:复数z=(a2i)(1+i)=a+2+(a2)i,在复平面内对应的点M的坐标是(a+2,a2),若点在第四象限则a+20,a20,2a2,“a=1”是“点M在第四象限”的充分不必要条件,故答案为:充分不必要【点评】本题考查条件问题,考查复数的代数表示法及其几何意义,考查各个象限的点的坐标特点,本题是一个基础题18【答案】 【解析】解:由图象得:f(x)在(1,3)上递减,在(3,1),(3,+)递增,f(x)在(3,1)上是增函数,正确,x=3是f(x)的极小值点,不正确;f(x)在(2,4)上是减函数,在(1,2)上是增函数,不正确,故答案为:三、解答题19【答案】(1)证明见解析;(2)【解析】试题分析:(1)可先证,从而得到平面,再证,可得平面,由,可证明平面平面;(2)由,取的中点,连接,可得即为异面直线与所成的角或其补角,即为所折起的角度.在三角形中求角即可. 1试题解析:(2)因为,取的中点,连接,所以,又,所以,从而四边形为平行四边形,所以,得;同时,因为,所以,故折起的角度.考点:点、线、面之间的位置关系的判定与性质20【答案】(1)a(2)(,1(3)【解析】(2)f(x)f(x)6(a1)x212lnx对任意x(0,+)恒成立,所以(a1)令g(x),x0,则g(x)令g(x)0,解得x当x(0,)时,g(x)0,所以g(x)在(0,)上单调递增;当x(,)时,g(x)0,所以g(x)在(,)上单调递减所以g(x)maxg(),所以(a1),即a1,所以a的取值范围为(,1(3)因为f(x)2x33(a1)x26ax,所以f (x)6x26(a1)x6a6(x1)(xa),f(1)3a1,f(2)4令f (x)0,则x1或a f(1)3a1,f(2)4当a2时,当x(1,a)时,f (x)0,所以f(x)在(1,a)上单调递减;当x(a,2)时,f (x)0,所以f(x)在(a,2)上单调递增又因为f(1)f(2),所以M(a)f(1)3a1,m(a)f(a)a33a2,所以h(a)M(a)m(a)3a1(a33a2)a33a23a1因为h (a)3a26a33(a1)20所以h(a)在(,2)上单调递增,所以当a(,2)时,h(a)h()当a2时,当x(1,2)时,f (x)0,所以f(x)在(1,2)上单调递减,所以M(a)f(1)3a1,m(a)f(2)4,所以h(a)M(a)m(a)3a143a5,所以h(a)在2,)上的最小值为h(2)1综上,h(a)的最小值为点睛:已知函数最值求参数值或取值范围的一般方法:(1)利用导数结合参数讨论函数最值取法,根据最值列等量关系,确定参数值或取值范围;(2)利用最值转化为不等式恒成立问题,结合变量分离转化为不含参数的函数,利用导数求新函数最值得参数值或取值范围.21【答案】 【解析】解:(1)函数f(x)=x2mx在1,+)上是单调函数x=1m2实数m的取值范围为(,2;(2)由(1)知,函数f(x)=x2mx在1,+)上是单调增函数,2cos2cos2+3cos2的取值范围为【点评】本题考查函数的单调性,考查求解不等式,解题的关键是利用单调性确定参数的范围,将抽象不等式转化为具体不等式22【答案】 【解析】解:(1)函数f(x)=f(2)=2+2=0,f(f(2)=f(0)=0.3分(2)函数的图象如图:单调增区间为(,1),(0,+)(开区间,闭区间都给分)由图可知:f(4)=2,f(1)=1,函数f(x)在区间(4,0)上的值域(2,112分23【答案】 【解析】证明:()由抛物线C:x2=2y得,y=x2,则y=x,在点P(m,n)切线的斜率k=m,切线方程是yn=m(xm),即yn=mxm2,又点P(m,n)是抛物线上一点,m2=2n,切线方程是mx2n=yn,即mx=y+n ()直线MF与直线l位置关系是垂直由()得,设切点为P(m,n),则切线l方程为mx=y+n,切线l的斜率k=m,点M(,0),又点F(0,),此时,kMF= kkMF=m()=1,直线MF直线l 【点评】本题考查直线与抛物线的位置关系,导数的几何意义,直线垂直的条件等,属于中档题24【答案】 【解析】解:(1)a=1时:f(0)=1=;(2)f(x)的定义域为R任取x1x2R
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论