乌兰察布市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
乌兰察布市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
乌兰察布市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
乌兰察布市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
乌兰察布市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

乌兰察布市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 如果对定义在上的函数,对任意,均有成立,则称函数为“函数”.给出下列函数:;其中函数是“函数”的个数为( )A1 B2 C3 D 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大2 某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )A BC. D3 某几何体的三视图如图所示,则它的表面积为( )ABCD4 若a=ln2,b=5,c=xdx,则a,b,c的大小关系( )AabcBBbacCCbcaDcba5 圆()与双曲线的渐近线相切,则的值为( )A B C D【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力6 已知三棱锥外接球的表面积为32,三棱锥的三视图如图所示,则其侧视图的面积的最大值为( )A4 B C8 D7 已知ab0,那么下列不等式成立的是( )AabBa+cb+cC(a)2(b)2D8 2sin 80的值为( )A1 B1C2 D29 设a=0.5,b=0.8,c=log20.5,则a、b、c的大小关系是( )AcbaBcabCabcDbac10棱长为的正方体的8个顶点都在球的表面上,则球的表面积为( )A B C D11已知ACBC,AC=BC,D满足=t+(1t),若ACD=60,则t的值为( )ABC1D12数列an的首项a1=1,an+1=an+2n,则a5=( )AB20C21D31二、填空题13f(x)=x(xc)2在x=2处有极大值,则常数c的值为 14已知集合,若3M,5M,则实数a的取值范围是14函数y=1(xR)的最大值与最小值的和为2 15多面体的三视图如图所示,则该多面体体积为(单位cm)16已知实数x,y满足,则目标函数z=x3y的最大值为17在ABC中,角A,B,C的对边分别为a,b,c,sinA,sinB,sinC依次成等比数列,c=2a且=24,则ABC的面积是18设函数f(x)是奇函数f(x)(xR)的导函数,f(1)=0,当x0时,xf(x)f(x)0,则使得f(x)0成立的x的取值范围是三、解答题19(本题12分)正项数列满足(1)求数列的通项公式;(2)令,求数列的前项和为.20已知a0,a1,命题p:“函数f(x)=ax在(0,+)上单调递减”,命题q:“关于x的不等式x22ax+0对一切的xR恒成立”,若pq为假命题,pq为真命题,求实数a的取值范围21如图,四棱锥中,为线段上一点,为的中点(1)证明:平面;(2)求直线与平面所成角的正弦值;22已知集合A=x|x1,或x2,B=x|2p1xp+3(1)若p=,求AB;(2)若AB=B,求实数p的取值范围23巳知二次函数f(x)=ax2+bx+c和g(x)=ax2+bx+clnx(abc0)()证明:当a0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;()在同一函数图象上取任意两个不同的点A(x1,y1),B(x2,y2),线段AB的中点C(x0,y0),记直线AB的斜率为k若f(x)满足k=f(x0),则称其为“K函数”判断函数f(x)=ax2+bx+c与g(x)=ax2+bx+clnx是否为“K函数”?并证明你的结论 24如图,已知椭圆C,点B坐标为(0,1),过点B的直线与椭圆C的另外一个交点为A,且线段AB的中点E在直线y=x上(1)求直线AB的方程;(2)若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,直线BM交椭圆C于另外一点Q证明:OMON为定值;证明:A、Q、N三点共线 乌兰察布市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】第2 【答案】A【解析】试题分析:利用余弦定理求出正方形面积;利用三角形知识得出四个等腰三角形面积;故八边形面积.故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式求出个三角形的面积;接下来利用余弦定理可求出正方形的边长的平方,进而得到正方形的面积,最后得到答案.3 【答案】 A【解析】解:由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2,母线长为,圆锥的表面积S=S底面+S侧面=12+22+=2+故选A【点评】本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及三视图的数据所对应的几何量4 【答案】C【解析】解: a=ln2lne即,b=5=,c=xdx=,a,b,c的大小关系为:bca故选:C【点评】本题考查了不等式大小的比较,关键是求出它们的取值范围,是基础题5 【答案】C6 【答案】A【解析】考点:三视图【方法点睛】本题主要考查几何体的三视图,空间想象能力.空间几何体的三视图是分别从空间几何体的正面,左面,上面用平行投影的方法得到的三个平面投影图.因此在分析空间几何体的三视图时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱,面的位置,再确定几何体的形状,即可得到结果. 要能够牢记常见几何体的三视图.7 【答案】C【解析】解:ab0,ab0,(a)2(b)2,故选C【点评】本题主要考查不等式的基本性质的应用,属于基础题8 【答案】【解析】解析:选A.2 sin 802cos 101,选A.9 【答案】B【解析】解:a=0.5,b=0.8,0ab,c=log20.50,cab,故选B【点评】本题主要考查了对数值、指数值大小的比较,常常与中间值进行比较,属于基础题10【答案】【解析】考点:球与几何体11【答案】A【解析】解:如图,根据题意知,D在线段AB上,过D作DEAC,垂足为E,作DFBC,垂足为F;若设AC=BC=a,则由得,CE=ta,CF=(1t)a;根据题意,ACD=60,DCF=30;即;解得故选:A【点评】考查当满足时,便说明D,A,B三点共线,以及向量加法的平行四边形法则,平面向量基本定理,余弦函数的定义12【答案】C【解析】解:由an+1=an+2n,得an+1an=2n,又a1=1,a5=(a5a4)+(a4a3)+(a3a2)+(a2a1)+a1=2(4+3+2+1)+1=21故选:C【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题二、填空题13【答案】6 【解析】解:f(x)=x32cx2+c2x,f(x)=3x24cx+c2,f(2)=0c=2或c=6若c=2,f(x)=3x28x+4,令f(x)0x或x2,f(x)0x2,故函数在(,)及(2,+)上单调递增,在(,2)上单调递减,x=2是极小值点故c=2不合题意,c=6故答案为6【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式14【答案】2【解析】解:设f(x)=,则f(x)为奇函数,所以函数f(x)的最大值与最小值互为相反数,即f(x)的最大值与最小值之和为0将函数f(x)向上平移一个单位得到函数y=1的图象,所以此时函数y=1(xR)的最大值与最小值的和为2故答案为:2【点评】本题考查了函数奇偶性的应用以及函数图象之间的关系,奇函数的最大值和最小值互为相反数是解决本题的关键15【答案】cm3 【解析】解:如图所示,由三视图可知:该几何体为三棱锥PABC该几何体可以看成是两个底面均为PCD,高分别为AD和BD的棱锥形成的组合体,由几何体的俯视图可得:PCD的面积S=44=8cm2,由几何体的正视图可得:AD+BD=AB=4cm,故几何体的体积V=84=cm3,故答案为: cm3【点评】本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键16【答案】5 【解析】解:由z=x3y得y=,作出不等式组对应的平面区域如图(阴影部分):平移直线y=,由图象可知当直线y=经过点C时,直线y=的截距最小,此时z最大,由,解得,即C(2,1)代入目标函数z=x3y,得z=23(1)=2+3=5,故答案为:517【答案】4 【解析】解:sinA,sinB,sinC依次成等比数列,sin2B=sinAsinC,由正弦定理可得:b2=ac,c=2a,可得:b=a,cosB=,可得:sinB=,=24,可得:accosB=ac=24,解得:ac=32,SABC=acsinB=4故答案为:418【答案】(,1)(0,1) 【解析】解:设g(x)=,则g(x)的导数为:g(x)=,当x0时总有xf(x)f(x)成立,即当x0时,g(x)恒小于0,当x0时,函数g(x)=为减函数,又g(x)=g(x),函数g(x)为定义域上的偶函数又g(1)=0,函数g(x)的大致图象如图所示:数形结合可得,不等式f(x)0xg(x)0或,0x1或x1f(x)0成立的x的取值范围是(,1)(0,1)故答案为:(,1)(0,1)三、解答题19【答案】(1);(2).考点:1一元二次方程;2裂项相消法求和20【答案】 【解析】解:若p为真,则0a1;若q为真,则=4a210,得,又a0,a1,因为pq为假命题,pq为真命题,所以p,q中必有一个为真,且另一个为假当p为真,q为假时,由;当p为假,q为真时,无解 综上,a的取值范围是【点评】1求解本题时,应注意大前提“a0,a1”,a的取值范围是在此条件下进行的21【答案】(1)证明见解析;(2).【解析】试题解析:(2)在三角形中,由,得,则,底面平面,平面平面,且平面平面,平面,则平面平面,在平面内,过作,交于,连结,则为直线与平面所成角。在中,由,得,所以直线与平面所成角的正弦值为1考点:立体几何证明垂直与平行22【答案】 【解析】解:(1)当p=时,B=x|0x,AB=x|2x;(2)当AB=B时,BA;令2p1p+3,解得p4,此时B=,满足题意;当p4时,应满足,解得p不存在;综上,实数p的取值范围p423【答案】 【解析】解:()证明:如果g(x)是定义域(0,+)上的增函数,则有g(x)=2ax+b+=0;从而有2ax2+bx+c0对任意x(0,+)恒成立;又a0,则结合二次函数的图象可得,2ax2+bx+c0对任意x(0,+)恒成立不可能,故当a0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;()函数f(x)=ax2+bx+c是“K函数”,g(x)=ax2+bx+clnx不是“K函数”,事实上,对于二次函数f(x)=ax2+bx+c,k=a(x1+x2)+b=2ax0+b;又f(x0)=2ax0+b,故k=f(x0);故函数f(x)=ax2+bx+c是“K函数”;对于函数g(x)=ax2+bx+clnx,不妨设0x1x2,则k=2ax0+b+;而g(x0)=2ax0+b+;故=,化简可得,=;设t=,则0t1,lnt=;设s(t)=lnt;则s(t)=0;则s(t)=lnt是(0,1)上的增函数,故s(t)s(1)=0;则lnt;故g(x)=ax2+bx+clnx不是“K函数”【点评】本题考查了导数的综合应用及学生对新定义的接受能力,属于中档题24【答案】 【解析】(1)解:设点E(t,t),B(0,1),A(2t,2t+1),点A在椭圆C上,整理得:6t2+4t=0,解得t=或t=0(舍去),E(,),A(,),直线AB的方程为:x+2y+2=0;(2)证明:设P(x0,y0),则,直线AP方程为:y+=(x+),联立直线AP与直线y=x的方程,解得:xM=,直线BP的方程为:y+1=,联立直线BP与直线y=x的方程,解得:xN=,OM

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论