




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
理塘县高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 ,则( )A B C D2 函数f(x)=x22ax,x1,+)是增函数,则实数a的取值范围是( )ARB1,+)C(,1D2,+)3 已知集合M=x|x21,N=x|x0,则MN=( )ABx|x0Cx|x1Dx|0x1可4 已知,满足不等式则目标函数的最大值为( )A3 B C12 D155 底面为矩形的四棱锥PABCD的顶点都在球O的表面上,且O在底面ABCD内,PO平面ABCD,当四棱锥PABCD的体积的最大值为18时,球O的表面积为( )A36 B48C60 D726 已知球的半径和圆柱体的底面半径都为1且体积相同,则圆柱的高为( )A1BC2D47 某三棱锥的三视图如图所示,该三棱锥的体积是( )A 2 B4 C D【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.8 已知函数f(x)=x3+mx2+(2m+3)x(mR)存在两个极值点x1,x2,直线l经过点A(x1,x12),B(x2,x22),记圆(x+1)2+y2=上的点到直线l的最短距离为g(m),则g(m)的取值范围是( )A0,2B0,3C0,)D0,)9 已知直线的参数方程为(为参数,为直线的倾斜角),以原点O为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆的两个交点为,当最小时,的值为( )A B C D10已知函数f(x)满足f(x)=f(x),且当x(,)时,f(x)=ex+sinx,则( )ABCD11已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于( )A B C D12已知全集为,且集合,则等于( )A B C D【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.二、填空题13某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全校学生中抽取1名学生,抽到高二年级女生的概率为,先采用分层抽样(按年级分层)在全校抽取100人,则应在高三年级中抽取的人数等于 .14调查某公司的四名推销员,其工作年限与年推销金额如表 推销员编号1234工作年限x/(年)351014年推销金额y/(万元)23712由表中数据算出线性回归方程为=x+若该公司第五名推销员的工作年限为8年,则估计他(她)的年推销金额为万元15球O的球面上有四点S,A,B,C,其中O,A,B,C四点共面,ABC是边长为2的正三角形,平面SAB平面ABC,则棱锥SABC的体积的最大值为16如图,在棱长为的正方体中,点分别是棱的中点,是侧面内一点,若平行于平面,则线段长度的取值范围是_.17一船以每小时12海里的速度向东航行,在A处看到一个灯塔B在北偏东60,行驶4小时后,到达C处,看到这个灯塔B在北偏东15,这时船与灯塔相距为海里18若全集,集合,则 。三、解答题19已知曲线C的极坐标方程为42cos2+92sin2=36,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系;()求曲线C的直角坐标方程;()若P(x,y)是曲线C上的一个动点,求3x+4y的最大值20已知函数f(x)=x2mx在1,+)上是单调函数(1)求实数m的取值范围;(2)设向量,求满足不等式的的取值范围21已知定义在的一次函数为单调增函数,且值域为(1)求的解析式;(2)求函数的解析式并确定其定义域22已知函数f(x0=(1)画出y=f(x)的图象,并指出函数的单调递增区间和递减区间; (2)解不等式f(x1)23(本小题满分12分)如图,在四棱锥中,底面是菱形,且点是棱的中点,平面与棱交于点(1)求证:;(2)若,且平面平面,求平面与平面所成的锐二面角的余弦值【命题意图】本小题主要考查空间直线与平面,直线与直线垂直的判定,二面角等基础知识,考查空间想象能力,推理论证能力,运算求解能力,以及数形结合思想、化归与转化思想.24在ABC中,cos2A3cos(B+C)1=0(1)求角A的大小;(2)若ABC的外接圆半径为1,试求该三角形面积的最大值理塘县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】试题分析:,由于为增函数,所以.应为为增函数,所以,故.考点:比较大小2 【答案】C【解析】解:由于f(x)=x22ax的对称轴是直线x=a,图象开口向上,故函数在区间(,a为减函数,在区间a,+)上为增函数,又由函数f(x)=x22ax,x1,+)是增函数,则a1故答案为:C3 【答案】D【解析】解:由已知M=x|1x1,N=x|x0,则MN=x|0x1,故选D【点评】此题是基础题本题属于以不等式为依托,求集合的交集的基础题,4 【答案】C 考点:线性规划问题【易错点睛】线性规划求解中注意的事项:(1)线性规划问题中,正确画出不等式组表示的平面区域是解题的基础(2)目标函数的意义,有的可以用直线在轴上的截距来表示,还有的可以用两点连线的斜率、两点间的距离或点到直线的距离来表示(3)线性目标函数的最值一般在可行域的顶点或边界上取得,特别地对最优整数解可视情况而定5 【答案】【解析】选A.设球O的半径为R,矩形ABCD的长,宽分别为a,b,则有a2b24R22ab,ab2R2,又V四棱锥PABCDS矩形ABCDPOabRR3.R318,则R3,球O的表面积为S4R236,选A.6 【答案】B【解析】解:设圆柱的高为h,则V圆柱=12h=h,V球=,h=故选:B7 【答案】B 8 【答案】C【解析】解:函数f(x)=x3+mx2+(2m+3)x的导数为f(x)=x2+2mx+2m+3,由题意可得,判别式0,即有4m24(2m+3)0,解得m3或m1,又x1+x2=2m,x1x2=2m+3,直线l经过点A(x1,x12),B(x2,x22),即有斜率k=x1+x2=2m,则有直线AB:yx12=2m(xx1),即为2mx+y2mx1x12=0,圆(x+1)2+y2=的圆心为(1,0),半径r为则g(m)=dr=,由于f(x1)=x12+2mx1+2m+3=0,则g(m)=,又m3或m1,即有m21则g(m)=,则有0g(m)故选C【点评】本题考查导数的运用:求极值,同时考查二次方程韦达定理的运用,直线方程的求法和点到直线的距离公式的运用,以及圆上的点到直线的距离的最值的求法,属于中档题9 【答案】A 【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系在直角坐标系中,圆的方程为,直线的普通方程为,直线过定点,点在圆的内部当最小时,直线直线,直线的斜率为,选A10【答案】D【解析】解:由f(x)=f(x)知,f()=f()=f(),当x(,)时,f(x)=ex+sinx为增函数,f()f()f(),f()f()f(),故选:D11【答案】C【解析】考点:三视图12【答案】C 二、填空题13【答案】【解析】考点:分层抽样方法14【答案】 【解析】解:由条件可知=(3+5+10+14)=8, =(2+3+7+12)=6,代入回归方程,可得a=,所以=x,当x=8时,y=,估计他的年推销金额为万元故答案为:【点评】本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题15【答案】 【解析】解:由题意画出几何体的图形如图由于面SAB面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S在“最高点”,也就是说H为AB中点时,SH最大,棱锥SABC的体积最大ABC是边长为2的正三角形,所以球的半径r=OC=CH=在RTSHO中,OH=OC=OSHSO=30,求得SH=OScos30=1,体积V=Sh=221=故答案是【点评】本题考查锥体体积计算,根据几何体的结构特征确定出S位置是关键考查空间想象能力、计算能力16【答案】【解析】考点:点、线、面的距离问题.【方法点晴】本题主要考查了点、线、面的距离问题,其中解答中涉及到直线与平面平行的判定与性质,三角形的判定以及直角三角形的勾股定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,同时考查了学生空间想象能力的训练,试题有一定的难度,属于中档试题.17【答案】24 【解析】解:根据题意,可得出B=7530=45,在ABC中,根据正弦定理得:BC=24海里,则这时船与灯塔的距离为24海里故答案为:2418【答案】|01【解析】,|01。三、解答题19【答案】 【解析】解:()由42cos2+92sin2=36得4x2+9y2=36,化为;()设P(3cos,2sin),则3x+4y=,R,当sin(+)=1时,3x+4y的最大值为【点评】本题考查了椭圆的极坐标方程、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题20【答案】 【解析】解:(1)函数f(x)=x2mx在1,+)上是单调函数x=1m2实数m的取值范围为(,2;(2)由(1)知,函数f(x)=x2mx在1,+)上是单调增函数,2cos2cos2+3cos2的取值范围为【点评】本题考查函数的单调性,考查求解不等式,解题的关键是利用单调性确定参数的范围,将抽象不等式转化为具体不等式21【答案】(1),;(2),.【解析】试题解析:(1)设,111由题意有:解得,(2),考点:待定系数法22【答案】 【解析】解:(1)图象如图所示:由图象可知函数的单调递增区间为(,0),(1,+),丹迪减区间是(0,1)(2)由已知可得或,解得x1或x,故不等式的解集为(,1,【点评】本题考查了分段函数的图象的画法和不等式的解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025全日制劳动合同书样本
- 法医病理考试题库及答案
- 环保公益及绿色生活推广方案
- 25秋新人教版英语七年级上册 Unit 2 Section B同步练习(含答案)
- 日常生活垃圾清运合同书5篇
- 办公室装修设计与施工合同书条款内容
- 档案法知识考试题及答案
- 2025年贵溪市市直事业单位公开遴选工作人员笔试备考题库及答案
- 合同履行与诚信履约承诺书8篇
- 日语公司笔试题库及答案
- 企业防台风安全培训课件
- 2025年全国消防设施操作员中级理论考试(单选上)
- 产品设计调研课件
- 静脉输液团标课件
- 证券公司合伙协议书
- 2025年高新技术研发成果转化市场分析报告
- 2025年编外人员考试题库答案
- 江苏省城镇供水管道清洗工程估价表及工程量计算标准 2025
- 加气现场安全知识培训课件
- 前庭大腺脓肿
- 2025年秋人教版二年级上册数学教学计划含教学进度表
评论
0/150
提交评论