山丹县高中2018-2019学年上学期高二数学12月月考试题含解析_第1页
山丹县高中2018-2019学年上学期高二数学12月月考试题含解析_第2页
山丹县高中2018-2019学年上学期高二数学12月月考试题含解析_第3页
山丹县高中2018-2019学年上学期高二数学12月月考试题含解析_第4页
山丹县高中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山丹县高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若a=ln2,b=5,c=xdx,则a,b,c的大小关系( )AabcBBbacCCbcaDcba2 在正方体中,是线段的中点,若四面体的外接球体积为,则正方体棱长为( )A2 B3 C4 D5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力3 已知,若不等式对一切恒成立,则的最大值为( )A B C D 4 设f(x)=ex+x4,则函数f(x)的零点所在区间为( )A(1,0)B(0,1)C(1,2)D(2,3)5 设集合A=x|xa,B=x|x3,则“a3”是“AB”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件6 将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( )A1372B2024C3136D44957 已知的终边过点,则等于( )A B C-5 D58 已知全集U=R,集合A=1,2,3,4,5,B=xR|x3,图中阴影部分所表示的集合为( )A1B1,2C1,2,3D0,1,29 复数的虚部为( )A2B2iC2D2i10用秦九韶算法求多项式f(x)=x65x5+6x4+x2+0.3x+2,当x=2时,v1的值为( )A1B7C7D511下列说法正确的是( )A类比推理是由特殊到一般的推理B演绎推理是特殊到一般的推理C归纳推理是个别到一般的推理D合情推理可以作为证明的步骤12奇函数f(x)在(,0)上单调递增,若f(1)=0,则不等式f(x)0的解集是( )A(,1)(0,1)B(,1)(1,+)C(1,0)(0,1)D(1,0)(1,+)二、填空题13自圆:外一点引该圆的一条切线,切点为,切线的长度等于点到原点的长,则的最小值为( )AB3C4D【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想14已知f(x)=,x0,若f1(x)=f(x),fn+1(x)=f(fn(x),nN+,则f2015(x)的表达式为15设,实数,满足,若,则实数的取值范围是_【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力16长方体ABCDA1B1C1D1的8个顶点都在球O的表面上,E为AB的中点,CE=3,异面直线A1C1与CE所成角的余弦值为,且四边形ABB1A1为正方形,则球O的直径为17已知函数是定义在R上的奇函数,且当时,,则在R上的解析式为 18计算:51=三、解答题19某校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是:50,6060,7070,8080,9090,100(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分20解不等式|2x1|x|+1 21(本小题满分13分)椭圆:的左、右焦点分别为、,直线经过点与椭圆交于点,点在轴的上方当时,()求椭圆的方程;()若点是椭圆上位于轴上方的一点, ,且,求直线的方程22【徐州市2018届高三上学期期中】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化其中半圆的圆心为,半径为,矩形的一边在直径上,点、在圆周上,、在边上,且,设(1)记游泳池及其附属设施的占地面积为,求的表达式;(2)怎样设计才能符合园林局的要求?23已知f()=,(1)化简f(); (2)若f()=2,求sincos+cos2的值24设f(x)=x2ax+2当x,使得关于x的方程f(x)tf(2a)=0有三个不相等的实数根,求实数t的取值范围 山丹县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解: a=ln2lne即,b=5=,c=xdx=,a,b,c的大小关系为:bca故选:C【点评】本题考查了不等式大小的比较,关键是求出它们的取值范围,是基础题2 【答案】C3 【答案】C 【解析】解析:本题考查用图象法解决与函数有关的不等式恒成立问题当(如图1)、(如图2)时,不等式不可能恒成立;当时,如图3,直线与函数图象相切时,切点横坐标为,函数图象经过点时,观察图象可得,选C4 【答案】C【解析】解:f(x)=ex+x4,f(1)=e1140,f(0)=e0+040,f(1)=e1+140,f(2)=e2+240,f(3)=e3+340,f(1)f(2)0,由零点判定定理可知,函数的零点在(1,2)故选:C5 【答案】A【解析】解:若AB,则a3,则“a3”是“AB”的充分不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,根据集合关系是解决本题的关键6 【答案】 C【解析】【专题】排列组合【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上任选正方形的三边,使三个顶点分别在其上,有4种方法,再在选出的三条边上各选一点,有73种方法这类三角形共有473=1372个另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点这类三角形共有42121=1764个综上可知,可得不同三角形的个数为1372+1764=3136故选:C【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题7 【答案】B【解析】考点:三角恒等变换8 【答案】B【解析】解:图中阴影部分表示的集合中的元素是在集合A中,但不在集合B中由韦恩图可知阴影部分表示的集合为(CUB)A,又A=1,2,3,4,5,B=xR|x3,CUB=x|x3,(CUB)A=1,2则图中阴影部分表示的集合是:1,2故选B【点评】本小题主要考查Venn图表达集合的关系及运算、Venn图的应用等基础知识,考查数形结合思想属于基础题9 【答案】C【解析】解:复数=1+2i的虚部为2故选;C【点评】本题考查了复数的运算法则、虚部的定义,属于基础题10【答案】C【解析】解:f(x)=x65x5+6x4+x2+0.3x+2=(x5)x+6)x+0)x+2)x+0.3)x+2,v0=a6=1,v1=v0x+a5=1(2)5=7,故选C11【答案】C【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,故选C【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题12【答案】A【解析】解:根据题意,可作出函数图象:不等式f(x)0的解集是(,1)(0,1)故选A二、填空题13【答案】D【解析】14【答案】 【解析】解:由题意f1(x)=f(x)=f2(x)=f(f1(x)=,f3(x)=f(f2(x)=,fn+1(x)=f(fn(x)=,故f2015(x)=故答案为:15【答案】.【解析】16【答案】4或 【解析】解:设AB=2x,则AE=x,BC=,AC=,由余弦定理可得x2=9+3x2+923,x=1或,AB=2,BC=2,球O的直径为=4,或AB=2,BC=,球O的直径为=故答案为:4或17【答案】【解析】试题分析:令,则,所以,又因为奇函数满足,所以,所以在R上的解析式为。考点:函数的奇偶性。18【答案】9 【解析】解:51=(5)(9)=9,51=9,故答案为:9三、解答题19【答案】 【解析】解:(1)依题意,根据频率分布直方图中各个小矩形的面积和等于1得,10(2a+0.02+0.03+0.04)=1,解得a=0.005图中a的值0.005(2)这100名学生语文成绩的平均分为:550.05+650.4+750.3+850.2+950.05=73(分),【点评】本题考查频率分布估计总体分布,解题的关键是理解频率分布直方图,熟练掌握频率分布直方图的性质,且能根据所给的数据建立恰当的方程求解20【答案】 【解析】解:根据题意,对x分3种情况讨论:当x0时,原不等式可化为2x+1x+1,解得x0,又x0,则x不存在,此时,不等式的解集为当时,原不等式可化为2x+1x+1,解得x0,又,此时其解集为x|当时,原不等式可化为2x1x+1,解得,又由,此时其解集为x|,x| x| =x|0x2;综上,原不等式的解集为x|0x2【点评】本题考查绝对值不等式的解法,涉及分类讨论的数学思想,关键是用分段讨论法去掉绝对值,化为与之等价的不等式来解21【答案】 【解析】解:()由直线经过点得,当时,直线与轴垂直,由解得,椭圆的方程为 (4分)()设,由知.联立方程,消去得,解得,同样可求得, (11分)由得,解得,直线的方程为 (13分)22【答案】(1)(2)【解析】试题分析:(1)根据直角三角形求两个矩形的长与宽,再根据矩形面积公式可得函数解析式,最后根据实际意义确定定义域(2)利用导数求函数最值,求导解得零点,列表分析导函数符号变化规律,确定函数单调性,进而得函数最值(2)要符合园林局的要求,只要最小,由(1)知,令,即,解得或(舍去),令,当时,是单调减函数,当时,是单调增函数,所以当时,取得最小值.答:当满足时,符合园林

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论