安源区一中2018-2019学年上学期高二数学12月月考试题含解析_第1页
安源区一中2018-2019学年上学期高二数学12月月考试题含解析_第2页
安源区一中2018-2019学年上学期高二数学12月月考试题含解析_第3页
安源区一中2018-2019学年上学期高二数学12月月考试题含解析_第4页
安源区一中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安源区一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 双曲线=1(mZ)的离心率为( )AB2CD32 抛物线y=8x2的准线方程是( )Ay=By=2Cx=Dy=23 实数x,y满足不等式组,则下列点中不能使u=2x+y取得最大值的是( )A(1,1)B(0,3)C(,2)D(,0)4 在定义域内既是奇函数又是减函数的是( )Ay=By=x+Cy=x|x|Dy=5 已知,那么夹角的余弦值( )ABC2D6 在平行四边形ABCD中,AC为一条对角线, =(2,4),=(1,3),则等于( )A(2,4)B(3,5)C(3,5)D(2,4)7 设x,y满足线性约束条件,若z=axy(a0)取得最大值的最优解有数多个,则实数a的值为( )A2BCD38 为得到函数的图象,只需将函数y=sin2x的图象( )A向左平移个长度单位B向右平移个长度单位C向左平移个长度单位D向右平移个长度单位9 若复数z=(其中aR,i是虚数单位)的实部与虚部相等,则a=( )A3B6C9D1210以的焦点为顶点,顶点为焦点的椭圆方程为( )ABCD 11已知集合M=0,1,2,则下列关系式正确的是( )A0MB0MC0MD0M12己知y=f(x)是定义在R上的奇函数,当x0时,f(x)=x+2,那么不等式2f(x)10的解集是( )AB或CD或二、填空题13圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线xy+1=0相交所得的弦长为,则圆的方程为14已知函数为定义在区间2a,3a1上的奇函数,则a+b=15直线ax2y+2=0与直线x+(a3)y+1=0平行,则实数a的值为 16已知线性回归方程=9,则b=17已知一组数据,的方差是2,另一组数据,()的标准差是,则 18方程有两个不等实根,则的取值范围是 三、解答题19在数列an中,a1=1,an+1=1,bn=,其中nN*(1)求证:数列bn为等差数列;(2)设cn=bn+1(),数列cn的前n项和为Tn,求Tn;(3)证明:1+21(nN*) 20已知函数f(x)=x2ax+(a1)lnx(a1)() 讨论函数f(x)的单调性;() 若a=2,数列an满足an+1=f(an)(1)若首项a1=10,证明数列an为递增数列;(2)若首项为正整数,且数列an为递增数列,求首项a1的最小值 21如图,ABCD是边长为3的正方形,DE平面ABCD,AFDE,DE=3AF,BE与平面ABCD所成角为60()求证:AC平面BDE;()求二面角FBED的余弦值;()设点M是线段BD上一个动点,试确定点M的位置,使得AM平面BEF,并证明你的结论22已知集合A=x|2x6,集合B=x|x3(1)求CR(AB);(2)若C=x|xa,且AC,求实数a的取值范围23如图,在三棱锥ABCD中,AB平面BCD,BCCD,E,F,G分别是AC,AD,BC的中点求证:(I)AB平面EFG;(II)平面EFG平面ABC24设数列的前项和为,且满足,数列满足,且(1)求数列和的通项公式(2)设,数列的前项和为,求证: (3)设数列满足(),若数列是递增数列,求实数的取值范围。安源区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:由题意,m240且m0,mZ,m=1双曲线的方程是y2x2=1a2=1,b2=3,c2=a2+b2=4a=1,c=2,离心率为e=2故选:B【点评】本题的考点是双曲线的简单性质,考查由双曲线的方程求三参数,考查双曲线中三参数的关系:c2=a2+b22 【答案】A【解析】解:整理抛物线方程得x2=y,p=抛物线方程开口向下,准线方程是y=,故选:A【点评】本题主要考查抛物线的基本性质解决抛物线的题目时,一定要先判断焦点所在位置3 【答案】 D【解析】解:由题意作出其平面区域,将u=2x+y化为y=2x+u,u相当于直线y=2x+u的纵截距,故由图象可知,使u=2x+y取得最大值的点在直线y=32x上且在阴影区域内,故(1,1),(0,3),(,2)成立,而点(,0)在直线y=32x上但不在阴影区域内,故不成立;故选D【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题4 【答案】C【解析】解:A.在定义域内没有单调性,该选项错误;B.时,y=,x=1时,y=0;该函数在定义域内不是减函数,该选项错误;Cy=x|x|的定义域为R,且(x)|x|=x|x|=(x|x|);该函数为奇函数;该函数在0,+),(,0)上都是减函数,且02=02;该函数在定义域R上为减函数,该选项正确;D.;0+101;该函数在定义域R上不是减函数,该选项错误故选:C【点评】考查反比例函数的单调性,奇函数的定义及判断方法,减函数的定义,以及分段函数单调性的判断,二次函数的单调性5 【答案】A【解析】解:,=,|=, =11+3(1)=4,cos=,故选:A【点评】本题考查了向量的夹角公式,属于基础题6 【答案】C【解析】解:,=(3,5)故选:C【点评】本题考查向量的基本运算,向量的坐标求法,考查计算能力7 【答案】B【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由z=axy(a0)得y=axz,a0,目标函数的斜率k=a0平移直线y=axz,由图象可知当直线y=axz和直线2xy+2=0平行时,当直线经过B时,此时目标函数取得最大值时最优解只有一个,不满足条件当直线y=axz和直线x3y+1=0平行时,此时目标函数取得最大值时最优解有无数多个,满足条件此时a=故选:B8 【答案】A【解析】解:,只需将函数y=sin2x的图象向左平移个单位得到函数的图象故选A【点评】本题主要考查诱导公式和三角函数的平移属基础题9 【答案】A【解析】解:复数z=由条件复数z=(其中aR,i是虚数单位)的实部与虚部相等,得,18a=3a+6,解得a=3故选:A【点评】本题考查复数的代数形式的混合运算,考查计算能力10【答案】D【解析】解:双曲线的顶点为(0,2)和(0,2),焦点为(0,4)和(0,4)椭圆的焦点坐标是为(0,2)和(0,2),顶点为(0,4)和(0,4)椭圆方程为故选D【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质11【答案】C【解析】解:对于A、B,是两个集合的关系,不能用元素与集合的关系表示,所以不正确;对于C,0是集合中的一个元素,表述正确对于D,是元素与集合的关系,错用集合的关系,所以不正确故选C【点评】本题考查运算与集合的关系,集合与集合的关系,考查基本知识的应用12【答案】B【解析】解:因为y=f(x)为奇函数,所以当x0时,x0,根据题意得:f(x)=f(x)=x+2,即f(x)=x2,当x0时,f(x)=x+2,代入所求不等式得:2(x+2)10,即2x3,解得x,则原不等式的解集为x;当x0时,f(x)=x2,代入所求的不等式得:2(x2)10,即2x5,解得x,则原不等式的解集为0x,综上,所求不等式的解集为x|x或0x故选B二、填空题13【答案】(x1)2+(y+1)2=5 【解析】解:设所求圆的圆心为(a,b),半径为r,点A(2,1)关于直线x+y=0的对称点A仍在这个圆上,圆心(a,b)在直线x+y=0上,a+b=0,且(2a)2+(1b)2=r2;又直线xy+1=0截圆所得的弦长为,且圆心(a,b)到直线xy+1=0的距离为d=,根据垂径定理得:r2d2=,即r2()2=;由方程组成方程组,解得;所求圆的方程为(x1)2+(y+1)2=5故答案为:(x1)2+(y+1)2=514【答案】2 【解析】解:f(x)是定义在2a,3a1上奇函数,定义域关于原点对称,即2a+3a1=0,a=1,函数为奇函数,f(x)=,即b2x1=b+2x,b=1即a+b=2,故答案为:215【答案】1【解析】【分析】利用两直线平行的条件,一次项系数之比相等,但不等于常数项之比,求得实数a的值【解答】解:直线ax2y+2=0与直线x+(a3)y+1=0平行,解得 a=1故答案为 116【答案】4 【解析】解:将代入线性回归方程可得9=1+2b,b=4故答案为:4【点评】本题考查线性回归方程,考查计算能力,属于基础题17【答案】2【解析】试题分析:第一组数据平均数为,考点:方差;标准差18【答案】【解析】试题分析:作出函数和的图象,如图所示,函数的图象是一个半圆,直线的图象恒过定点,结合图象,可知,当过点时,当直线与圆相切时,即,解得,所以实数的取值范围是.111考点:直线与圆的位置关系的应用【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、两点间的斜率公式,以及函数的图像的应用等知识点的综合考查,着重考查了转化与化归思想和学生的分析问题和解答问题的能力,属于中档试题,本题的解答中把方程的根转化为直线与半圆的交点是解答的关键.三、解答题19【答案】 【解析】(1)证明:bn+1bn=1,又b1=1数列bn为等差数列,首项为1,公差为1(2)解:由(1)可得:bn=ncn=bn+1()=(n+1)数列cn的前n项和为Tn=+3+(n+1)=+3+n+(n+1),Tn=+(n+1)=+(n+1),可得Tn=(3)证明:1+21(nN*)即为:1+1=2(k=2,3,)1+1+2(1)+()+()=1+2=211+21(nN*) 20【答案】 【解析】解:(),(x0),当a=2时,则在(0,+)上恒成立,当1a2时,若x(a1,1),则f(x)0,若x(0,a1)或x(1,+),则f(x)0,当a2时,若x(1,a1),则f(x)0,若x(0,1)或x(a1,+),则f(x)0,综上所述:当1a2时,函数f(x)在区间(a1,1)上单调递减,在区间(0,a1)和(1,+)上单调递增;当a=2时,函数(0,+)在(0,+)上单调递增;当a2时,函数f(x)在区间(0,1)上单调递减,在区间(0,1)和(a1,+)上单调递增()若a=2,则,由()知函数f(x)在区间(0,+)上单调递增,(1)因为a1=10,所以a2=f(a1)=f(10)=30+ln10,可知a2a10,假设0akak+1(k1),因为函数f(x)在区间(0,+)上单调递增,f(ak+1)f(ak),即得ak+2ak+10,由数学归纳法原理知,an+1an对于一切正整数n都成立,数列an为递增数列(2)由(1)知:当且仅当0a1a2,数列an为递增数列,f(a1)a1,即(a1为正整数),设(x1),则,函数g(x)在区间上递增,由于,g(6)=ln60,又a1为正整数,首项a1的最小值为6【点评】本题考查导数的运用:求单调区间,同时考查函数的零点存在定理和数学归纳法的运用,考查运算能力,属于中档题选做题:本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分7分如果多做,则按所做的前两题计分【选修4-2:矩阵与变换】21【答案】【解析】【分析】(I)由已知中DE平面ABCD,ABCD是边长为3的正方形,我们可得DEAC,ACBD,结合线面垂直的判定定理可得AC平面BDE;()以D为坐标原点,DA,DC,DE方向为x,y,z轴正方向,建立空间直角坐标系,分别求出平面BEF和平面BDE的法向量,代入向量夹角公式,即可求出二面角FBED的余弦值;()由已知中M是线段BD上一个动点,设M(t,t,0)根据AM平面BEF,则直线AM的方向向量与平面BEF法向量垂直,数量积为0,构造关于t的方程,解方程,即可确定M点的位置【解答】证明:()因为DE平面ABCD,所以DEAC因为ABCD是正方形,所以ACBD,从而AC平面BDE(4分)解:()因为DA,DC,DE两两垂直,所以建立空间直角坐标系Dxyz如图所示因为BE与平面ABCD所成角为600,即DBE=60,所以由AD=3,可知,则A(3,0,0),B(3,3,0),C(0,3,0),所以,设平面BEF的法向量为=(x,y,z),则,即令,则=因为AC平面BDE,所以为平面BDE的法向量,所以cos因为二面角为锐角,所以二面角FBED的余弦值为(8分)()点M是线段BD上一个动点,设M(t,t,0)则因为AM平面BEF,所以=0,即4(t3)+2t=0,解得t=2此时,点M坐标为(2,2,0),即当时,AM平面BEF(12分)22【答案】 【解析】解:(1)由题意:集合A=x|2x6,集合B=x|x3那么:AB=x|6x3CR(AB)=x|x3或x6(2)C=x|xa,AC,a6故得实数a的取值范围是6,+)【点评】本题主要考查集合的基本运算,比较基础23【答案】 【解析】证明:(I)在三棱锥ABCD中,E,G分别是AC,BC的中点所以ABEG因为EG平面EFG,AB平面EFG所以AB平面EFG(II)因为AB平面BCD,CD平面BCD所以ABCD又BCCD且ABBC=B所以CD平面ABC又E,F分别是AC,AD,的中点所以CD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论