




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷三原县二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 函数f(x)=3x+x的零点所在的一个区间是( )A(3,2)B(2,1)C(1,0)D(0,1)2 已知某工程在很大程度上受当地年降水量的影响,施工期间的年降水量X(单位:mm)对工期延误天数Y的影响及相应的概率P如表所示:降水量XX100100X200200X300X300工期延误天数Y051530概率P0.40.20.10.3在降水量X至少是100的条件下,工期延误不超过15天的概率为( )A0.1B0.3C0.42D0.53 “”是“”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性.4 数列1,4,7,10,13,的通项公式an为( )A2n1B3n+2C(1)n+1(3n2)D(1)n+13n25 已知两条直线,其中为实数,当这两条直线的夹角在内变动时,的取值范围是( )A B C D6 函数f(x)=有且只有一个零点时,a的取值范围是( )Aa0B0aCa1Da0或a17 两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20,灯塔B在观察站C的南偏东40,则灯塔A与灯塔B的距离为( )AakmB akmC2akmD akm8 在ABC中,则这个三角形一定是( )A等腰三角形B直角三角形C等腰直角三角D等腰或直角三角形9 已知平面向量=(1,2),=(2,m),且,则=( )A(5,10)B(4,8)C(3,6)D(2,4)10执行如图所示的程序框图,如果输入的t10,则输出的i( )A4 B5C6 D711已知函数,其中,对任意的都成立,在1和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为,则( )A B C D12集合U=R,A=x|x2x20,B=x|y=ln(1x),则图中阴影部分表示的集合是( )Ax|x1Bx|1x2Cx|0x1Dx|x1二、填空题13下列四个命题:两个相交平面有不在同一直线上的三个公交点经过空间任意三点有且只有一个平面过两平行直线有且只有一个平面在空间两两相交的三条直线必共面其中正确命题的序号是14函数y=sin2x2sinx的值域是y15已知函数.表示中的最小值,若函数恰有三个零点,则实数的取值范围是 16已知抛物线:的焦点为,点为抛物线上一点,且,双曲线:(,)的渐近线恰好过点,则双曲线的离心率为 .【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.17一个总体分为A,B,C三层,用分层抽样的方法从中抽取一个容量为15的样本,若B层中每个个体被抽到的概率都为,则总体的个数为18已知的面积为,三内角,的对边分别为,若,则取最大值时 三、解答题19巳知二次函数f(x)=ax2+bx+c和g(x)=ax2+bx+clnx(abc0)()证明:当a0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;()在同一函数图象上取任意两个不同的点A(x1,y1),B(x2,y2),线段AB的中点C(x0,y0),记直线AB的斜率为k若f(x)满足k=f(x0),则称其为“K函数”判断函数f(x)=ax2+bx+c与g(x)=ax2+bx+clnx是否为“K函数”?并证明你的结论 20(本题满分12分)已知数列的前项和为,().(1)求数列的通项公式;(2)若数列满足,记,求证:().【命题意图】本题考查了利用递推关系求通项公式的技巧,同时也考查了用错位相减法求数列的前项和.重点突出运算、论证、化归能力的考查,属于中档难度.21(本小题满分10分)选修4-4:坐标系与参数方程:在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系已知直线的极坐标方程为,曲线的极坐标方程为(1)设为参数,若,求直线的参数方程;(2)已知直线与曲线交于,设,且,求实数的值22已知函数f(x)=(a0)的导函数y=f(x)的两个零点为0和3(1)求函数f(x)的单调递增区间;(2)若函数f(x)的极大值为,求函数f(x)在区间0,5上的最小值23已知等差数列an,等比数列bn满足:a1=b1=1,a2=b2,2a3b3=1()求数列an,bn的通项公式;()记cn=anbn,求数列cn的前n项和Sn24某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一次幸福指数的调查问卷,并用茎叶图表示如图(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指数不低于70,说明孩子幸福感强)(1)根据茎叶图中的数据完成列联表,并判断能否有的把握认为孩子的幸福感强与是否是留守儿童有关?幸福感强幸福感弱总计留守儿童非留守儿童总计1111(2)从15个留守儿童中按幸福感强弱进行分层抽样,共抽取5人,又在这5人中随机抽取2人进行家访,求这2个学生中恰有一人幸福感强的概率参考公式:附表:0.0500.0103.8416.635三原县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:由函数f(x)=3x+x可知函数f(x)在R上单调递增,又f(1)=10,f(0)=30+0=10,f(1)f(0)0,可知:函数f(x)的零点所在的区间是(1,0)故选:C【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题2 【答案】D【解析】解:降水量X至少是100的条件下,工期延误不超过15天的概率P,设:降水量X至少是100为事件A,工期延误不超过15天的事件B,P(A)=0.6,P(AB)=0.3,P=P(B丨A)=0.5,故答案选:D3 【答案】A【解析】因为在上单调递增,且,所以,即.反之,当时,(),不能保证,所以“”是“”的充分不必要条件,故选A.4 【答案】C【解析】解:通过观察前几项可以发现:数列中符号是正负交替,每一项的符号为(1)n+1,绝对值为3n2,故通项公式an=(1)n+1(3n2)故选:C5 【答案】C【解析】1111试题分析:由直线方程,可得直线的倾斜角为,又因为这两条直线的夹角在,所以直线的倾斜角的取值范围是且,所以直线的斜率为且,即或,故选C.考点:直线的倾斜角与斜率.6 【答案】D【解析】解:f(1)=lg1=0,当x0时,函数f(x)没有零点,故2x+a0或2x+a0在(,0上恒成立,即a2x,或a2x在(,0上恒成立,故a1或a0;故选D【点评】本题考查了分段函数的应用,函数零点与方程的关系应用及恒成立问题,属于基础题7 【答案】D【解析】解:根据题意,ABC中,ACB=1802040=120,AC=BC=akm,由余弦定理,得cos120=,解之得AB=akm,即灯塔A与灯塔B的距离为akm,故选:D【点评】本题给出实际应用问题,求海洋上灯塔A与灯塔B的距离着重考查了三角形内角和定理和运用余弦定理解三角形等知识,属于基础题8 【答案】A【解析】解:,又cosC=,=,整理可得:b2=c2,解得:b=c即三角形一定为等腰三角形故选:A9 【答案】B【解析】解:排除法:横坐标为2+(6)=4,故选B10【答案】【解析】解析:选B.程序运行次序为第一次t5,i2;第二次t16,i3;第三次t8,i4;第四次t4,i5,故输出的i5.11【答案】C【解析】试题分析:因为函数,对任意的都成立,所以,解得或,又因为,所以,在和两数间插入共个数,使之与,构成等比数列,两式相乘,根据等比数列的性质得,故选C. 考点:1、不等式恒成立问题;2、等比数列的性质及倒序相乘的应用.12【答案】B【解析】解:由Venn图可知,阴影部分的元素为属于A当不属于B的元素构成,所以用集合表示为A(UB)A=x|x2x20=x|1x2,B=x|y=ln(1x)=x|1x0=x|x1,则UB=x|x1,则A(UB)=x|1x2故选:B【点评】本题主要考查Venn图表达 集合的关系和运算,比较基础二、填空题13【答案】 【解析】解:两个相交平面的公交点一定在平面的交线上,故错误;经过空间不共线三点有且只有一个平面,故错误;过两平行直线有且只有一个平面,正确;在空间两两相交交点不重合的三条直线必共面,三线共点时,三线可能不共面,故错误,故正确命题的序号是,故答案为:14【答案】1,3 【解析】解:函数y=sin2x2sinx=(sinx1)21,1sinx1,0(sinx1)24,1(sinx1)213函数y=sin2x2sinx的值域是y1,3故答案为1,3【点评】熟练掌握正弦函数的单调性、二次函数的单调性是解题的关键15【答案】【解析】试题分析:,因为,所以要使恰有三个零点,须满足,解得考点:函数零点【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.16【答案】17【答案】300 【解析】解:根据分层抽样的特征,每个个体被抽到的概率都相等,所以总体中的个体的个数为15=300故答案为:300【点评】本题考查了样本容量与总体的关系以及抽样方法的应用问题,是基础题目18【答案】【解析】考点:1、余弦定理及三角形面积公式;2、两角和的正弦、余弦公式及特殊角的三角函数.1【方法点睛】本题主要考查余弦定理及三角形面积公式、两角和的正弦、余弦公式及特殊角的三角函数,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.一般来说 ,当条件中同时出现 及 、 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答,解三角形时三角形面积公式往往根据不同情况选用下列不同形式.三、解答题19【答案】 【解析】解:()证明:如果g(x)是定义域(0,+)上的增函数,则有g(x)=2ax+b+=0;从而有2ax2+bx+c0对任意x(0,+)恒成立;又a0,则结合二次函数的图象可得,2ax2+bx+c0对任意x(0,+)恒成立不可能,故当a0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;()函数f(x)=ax2+bx+c是“K函数”,g(x)=ax2+bx+clnx不是“K函数”,事实上,对于二次函数f(x)=ax2+bx+c,k=a(x1+x2)+b=2ax0+b;又f(x0)=2ax0+b,故k=f(x0);故函数f(x)=ax2+bx+c是“K函数”;对于函数g(x)=ax2+bx+clnx,不妨设0x1x2,则k=2ax0+b+;而g(x0)=2ax0+b+;故=,化简可得,=;设t=,则0t1,lnt=;设s(t)=lnt;则s(t)=0;则s(t)=lnt是(0,1)上的增函数,故s(t)s(1)=0;则lnt;故g(x)=ax2+bx+clnx不是“K函数”【点评】本题考查了导数的综合应用及学生对新定义的接受能力,属于中档题20【答案】【解析】21【答案】【解析】【命题意图】本题主要考查抛物线极坐标方程、直线的极坐标方程与参数方程的互化、直线参数方程的几何意义的应用,意在考查逻辑思维能力、等价转化的能力、运算求解能力,以及方程思想、转化思想的应用22【答案】 【解析】解:f(x)=令g(x)=ax2+(2ab)x+bc函数y=f(x)的零点即g(x)=ax2+(2ab)x+bc的零点即:ax2+(2ab)x+bc=0的两根为0,3则解得:b=c=a,令f(x)0得0x3所以函数的f(x)的单调递增区间为(0,3),(2)由(1)得:函数在区间(0,3)单调递增,在(3,+)单调递减,a=2,; ,函数f(x)在区间0,4上的最小值为223【答案】 【解析】解:(I)设等差数列an的公差为d,等比数列bn的公比为q:a1=b1=1,a2=b2,2a3b3=11+d=q,2(1+2d)q2=1,解得或an=1,bn=1;或an=1+2(n1)=2n1,bn=3n1(II)当时,cn=anbn=1,Sn=n当时,cn=anbn=(2n1)3n1,Sn=1+33+532+(2n1)3n1,3Sn=3+332+(2n3)3n1+(2n1)3n,2Sn=1+2(3+32+3n1)(2n1)3n=1(2n1)3n=(22n)3n2,Sn=(n1)3n+1【点评】本题考查了等差数列与等比数列的通项公式及
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网红炸鸡品牌品牌授权终止及后续处理合同
- 同声传译租赁合同费用结算补充协议
- 海外房产买卖合同翻译及公证附件服务合同
- 拼多多平台店铺客户服务外包执行协议
- 国际化生物医药企业数据跨境传输安全评估及合规操作合同
- 国际货物保险合同公证认证及理赔服务协议
- 美容美体产品研发与技术转移合同
- 代购服务合同补充协议(含违约责任)
- 拼多多平台店铺品牌合作流量互推与资源共享合同
- 网络广告内容审核与版权保护合同
- T-CTTS 0019-2023 数字化实验室等级评价规范
- 保温安全生产管理制度
- 2023年中国铁路沈阳局集团有限公司招聘高校毕业生考试真题
- 戊酸二氟可龙乳膏-临床用药解读
- 2024年临期食品创新创业计划书
- 2023钢膜结构停车棚施工合同协议书
- 电力行业安全检查表(文档-)(正式版)
- 小学生古诗词知识竞赛题(附答案)
- 基于激光点云数据的三维模型构建
- 乔木栽植施工方案
- 《新时代劳动教育》新时代劳动价值观
评论
0/150
提交评论