




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
白玉县高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知函数f(x)=2ax33x2+1,若 f(x)存在唯一的零点x0,且x00,则a的取值范围是( )A(1,+)B(0,1)C(1,0)D(,1)2 已知直线与圆交于两点,为直线上任意一点,则的面积为( )A B. C. D. 3 已知f(x)=,则“ff(a)=1“是“a=1”的( )A充分不必要条件B必要不充分条件C充分必要条件D即不充分也不必要条件4 已知实数a,b,c满足不等式0abc1,且M=2a,N=5b,P=()c,则M、N、P的大小关系为( )AMNPBPMNCNPM5 已知函数f(x)=ax33x2+1,若f(x)存在唯一的零点x0,且x00,则实数a的取值范围是( )A(1,+)B(2,+)C(,1)D(,2)6 已知平面向量,若与垂直,则实数值为( )A B C D【命题意图】本题考查平面向量数量积的坐标表示等基础知识,意在考查基本运算能力7 若为等差数列,为其前项和,若,则成立的最大自然数为( )A11 B12 C13 D148 如图,AB是半圆O的直径,AB2,点P从A点沿半圆弧运动至B点,设AOPx,将动点P到A,B两点的距离之和表示为x的函数f(x),则yf(x)的图象大致为( )9 函数在定义域上的导函数是,若,且当时,设,则( )A B C D10执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是( )Ak7Bk6Ck5Dk411下列说法正确的是( )A命题“若x2=1,则x=1”的否命题为“若x2=1,则x1”B命题“x0R,x+x010”的否定是“xR,x2+x10”C命题“若x=y,则sin x=sin y”的逆否命题为假命题D若“p或q”为真命题,则p,q中至少有一个为真命题12已知为的三个角所对的边,若,则( )A23 B43 C31 D32【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力二、填空题13i是虚数单位,化简: =14方程有两个不等实根,则的取值范围是 15下列命题:集合的子集个数有16个;定义在上的奇函数必满足;既不是奇函数又不是偶函数;,从集合到集合的对应关系是映射;在定义域上是减函数其中真命题的序号是 16如图,在棱长为1的正方体ABCDA1B1C1D1中,M、N分别是A1B1和BB1的中点,那么直线AM和CN所成角的余弦值为17命题“xR,x22x10”的否定形式是18已知函数f(x)=x3ax2+3x在x1,+)上是增函数,求实数a的取值范围三、解答题19如图,已知AC,BD为圆O的任意两条直径,直线AE,CF是圆O所在平面的两条垂线,且线段AE=CF=,AC=2()证明ADBE;()求多面体EFABCD体积的最大值20已知椭圆+=1(ab0)的离心率为,且a2=2b(1)求椭圆的方程;(2)直线l:xy+m=0与椭圆交于A,B两点,是否存在实数m,使线段AB的中点在圆x2+y2=5上,若存在,求出m的值;若不存在,说明理由 21(本小题满分12分)的内角所对的边分别为,垂直.(1)求的值;(2)若,求的面积的最大值.22在ABC中,内角A,B,C所对的边分别是a,b,c,已知tanA=,c=()求;()若三角形ABC的面积为,求角C23如图,四棱锥PABCD的底面是正方形,PD底面ABCD,点E在棱PB上(1)求证:平面AEC平面PDB;(2)当PD=AB,且E为PB的中点时,求AE与平面PDB所成的角的大小24求函数f(x)=4x+4在0,3上的最大值与最小值白玉县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:若a=0,则函数f(x)=3x2+1,有两个零点,不满足条件若a0,函数的f(x)的导数f(x)=6ax26x=6ax(x),若 f(x)存在唯一的零点x0,且x00,若a0,由f(x)0得x或x0,此时函数单调递增,由f(x)0得0x,此时函数单调递减,故函数在x=0处取得极大值f(0)=10,在x=处取得极小值f(),若x00,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件若a0,由f(x)0得x0,此时函数递增,由f(x)0得x或x0,此时函数单调递减,即函数在x=0处取得极大值f(0)=10,在x=处取得极小值f(),若存在唯一的零点x0,且x00,则f()0,即2a()33()2+10,()21,即10,解得a1,故选:D【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键注意分类讨论2 【答案】 C 【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.圆心到直线的距离,两平行直线之间的距离为,的面积为,选C3 【答案】B【解析】解:当a=1,则f(a)=f(1)=0,则f(0)=0+1=1,则必要性成立,若x0,若f(x)=1,则2x+1=1,则x=0,若x0,若f(x)=1,则x21=1,则x=,即若ff(a)=1,则f(a)=0或,若a0,则由f(a)=0或1得a21=0或a21=,即a2=1或a2=+1,解得a=1或a=,若a0,则由f(a)=0或1得2a+1=0或2a+1=,即a=,此时充分性不成立,即“ff(a)=1“是“a=1”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,根据分段函数的表达式解方程即可4 【答案】A【解析】解:0abc1,12a2,5b1,()c1,5b=()b()c()c,即MNP,故选:A【点评】本题主要考查函数值的大小比较,根据幂函数和指数函数的单调性的性质是解决本题的关键5 【答案】D【解析】解:f(x)=ax33x2+1,f(x)=3ax26x=3x(ax2),f(0)=1;当a=0时,f(x)=3x2+1有两个零点,不成立;当a0时,f(x)=ax33x2+1在(,0)上有零点,故不成立;当a0时,f(x)=ax33x2+1在(0,+)上有且只有一个零点;故f(x)=ax33x2+1在(,0)上没有零点;而当x=时,f(x)=ax33x2+1在(,0)上取得最小值;故f()=3+10;故a2;综上所述,实数a的取值范围是(,2);故选:D6 【答案】A7 【答案】A【解析】考点:得出数列的性质及前项和【方法点晴】本题主要考查了等差出数列的性质及前项和问题的应用,其中解答中涉及到等差数列的性质,等差数列的前项和等公式的灵活应用的知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档题,本题的解答中,由“,”判断前项和的符号问题是解答的关键 8 【答案】【解析】选B.取AP的中点M,则PA2AM2OAsinAOM2sin ,PB2OM2OAcosAOM2cos,yf(x)PAPB2sin2cos2sin(),x0,根据解析式可知,只有B选项符合要求,故选B.9 【答案】C【解析】考点:函数的对称性,导数与单调性【名师点睛】函数的图象是研究函数性质的一个重要工具,通过函数的图象研究问题是数形结合思想应用的不可或缺的重要一环,因此掌握函数的图象的性质是我们在平常学习中要重点注意的,如函数满足:或,则其图象关于直线对称,如满足,则其图象关于点对称10【答案】 C【解析】解:程序在运行过程中各变量值变化如下表: K S 是否继续循环循环前 1 0第一圈 2 2 是第二圈 3 7 是第三圈 4 18 是第四圈 5 41 是第五圈 6 88 否故退出循环的条件应为k5?故答案选C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视程序填空也是重要的考试题型,这种题考试的重点有:分支的条件循环的条件变量的赋值变量的输出其中前两点考试的概率更大此种题型的易忽略点是:不能准确理解流程图的含义而导致错误11【答案】D【解析】解:A命题“若x2=1,则x=1”的否命题为“若x21,则x1”,因此不正确;B命题“x0R,x+x010”的否定是“xR,x2+x10”,因此不正确;C命题“若x=y,则sin x=sin y”正确,其逆否命题为真命题,因此不正确;D命题“p或q”为真命题,则p,q中至少有一个为真命题,正确故选:D12【答案】C【解析】由已知等式,得,由正弦定理,得,则,所以,故选C二、填空题13【答案】1+2i 【解析】解: =故答案为:1+2i14【答案】【解析】试题分析:作出函数和的图象,如图所示,函数的图象是一个半圆,直线的图象恒过定点,结合图象,可知,当过点时,当直线与圆相切时,即,解得,所以实数的取值范围是.111考点:直线与圆的位置关系的应用【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、两点间的斜率公式,以及函数的图像的应用等知识点的综合考查,着重考查了转化与化归思想和学生的分析问题和解答问题的能力,属于中档试题,本题的解答中把方程的根转化为直线与半圆的交点是解答的关键.15【答案】【解析】试题分析:子集的个数是,故正确.根据奇函数的定义知正确.对于为偶函数,故错误.对于没有对应,故不是映射.对于减区间要分成两段,故错误.考点:子集,函数的奇偶性与单调性【思路点晴】集合子集的个数由集合的元素个数来决定,一个个元素的集合,它的子集的个数是个;对于奇函数来说,如果在处有定义,那么一定有,偶函数没有这个性质;函数的奇偶性判断主要根据定义,注意判断定义域是否关于原点对称.映射必须集合中任意一个元素在集合中都有唯一确定的数和它对应;函数的定义域和单调区间要区分清楚,不要随意写并集.116【答案】 【解析】解:如图,将AM平移到B1E,NC平移到B1F,则EB1F为直线AM与CN所成角设边长为1,则B1E=B1F=,EF=cosEB1F=,故答案为【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题17【答案】 【解析】解:因为全称命题的否定是特称命题所以,命题“xR,x22x10”的否定形式是:故答案为:18【答案】(,3 【解析】解:f(x)=3x22ax+3,f(x)在1,+)上是增函数,f(x)在1,+)上恒有f(x)0,即3x22ax+30在1,+)上恒成立则必有1且f(1)=2a+60,a3;实数a的取值范围是(,3三、解答题19【答案】 【解析】()证明:BD为圆O的直径,ABAD,直线AE是圆O所在平面的垂线,ADAE,ABAE=A,AD平面ABE,ADBE;()解:多面体EFABCD体积V=VBAEFC+VDAEFC=2VBAEFC直线AE,CF是圆O所在平面的两条垂线,AECF,AEAC,AFACAE=CF=,AEFC为矩形,AC=2,SAEFC=2,作BMAC交AC于点M,则BM平面AEFC,V=2VBAEFC=2=多面体EFABCD体积的最大值为【点评】本题考查线面垂直,线线垂直,考查体积的计算,考查学生分析解决问题的能力,难度中等20【答案】【解析】解:(1)由题意得e=,a2=2b,a2b2=c2,解得a=,b=c=1故椭圆的方程为x2+=1;(2)设A(x1,y1),B(x2,y2),线段AB的中点为M(x0,y0)联立直线y=x+m与椭圆的方程得,即3x2+2mx+m22=0,=(2m)243(m22)0,即m23,x1+x2=,所以x0=,y0=x0+m=,即M(,)又因为M点在圆x2+y2=5上,可得()2+()2=5,解得m=3与m23矛盾故实数m不存在【点评】本题考查椭圆的方程的求法,注意运用离心率公式,考查直线和椭圆方程联立,运用韦达定理和中点坐标公式,考查存在性问题的解法,属于中档题21【答案】(1);(2)4【解析】试题分析:(1)由向量垂直知两向量的数量积为0,利用数量积的坐标运算公式可得关于的等式,从而可借助正弦定理化为边的关系,最后再余弦定理求得,由同角关系得;(2)由于已知边及角,因此在(1)中等式中由基本不等式可求得,从而由公式可得面积的最大值试题解析:(1),垂直,考点:向量的数量积,正弦定理,余弦定理,基本不等式11122【答案】 【解析】解:()由题意知,tanA=,则=,即有sinAsinAcosC=cosAsinC,所以sinA=sinAcosC+cosAsinC=sin(A+C)=sinB,由正弦定理,a=b,则=1;()因为三角形ABC的面积为,a=b、c=,所以S=absinC=a2sinC=,则,由余弦定理得, =,由得,cosC+sinC=1,则2sin(C+)=1,sin(C+)=,又0C,则C+,即C+=,解得C= 【点评】本题考查正弦定理,三角形的面积公式,以及商的关系、两角和的正弦公式等,注意内角的范围,属于中档题23【答案】 【解析】()证明:四边形ABCD是正方形,ACBD,PD底面ABCD,PDAC,AC平面PDB,平面AEC平面PDB()解:设ACBD=O,连接OE,由()知AC平面PDB于O,AEO为AE与平面PDB所的角,O,E分别为DB、PB的中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同书与协议书
- 2025 车辆买卖合同范本(标准版)
- 黑龙江省安达市四平中学2026届数学九年级第一学期期末统考试题含解析
- 2025转让股权合同 转让股权合同范本
- 山东省济宁市邹城市九级2026届八年级数学第一学期期末达标检测模拟试题含解析
- 浙江省湖州市实验学校2026届数学九年级第一学期期末考试试题含解析
- 2026届湖北省襄阳市老河口市七年级数学第一学期期末综合测试试题含解析
- 2025网约车租赁合同的模板范文
- 在线教育行业现状与未来展望研究报告
- 2025合同范本股权激励协议附带保密条款示例
- 2025年初级药师资格考试试题(附答案)
- 人工智能与建筑产业体系智能化升级研究报告
- 包覆拉拔法制备铜包铝、铜包钢双金属导线的多维度探究与展望
- 茶叶农药知识培训课件
- 【2025秋季新修订教材】统编语文三上第六单元《19 香港璀璨的明珠》公开课一等奖创新教学设计
- 人教版数学二年级上册第一单元 分类与整 理 综合素养测评A卷(含答案)
- 临床带教老师
- 课题2 碳的氧化物(第1课时)教学课件九年级化学上册人教版2024
- GB/T 4732.2-2024压力容器分析设计第2部分:材料
- 中国近现代史纲要(河北工业大学)智慧树知到答案2024年河北工业大学
- 多模式数据融合在金融预测中的应用
评论
0/150
提交评论