灵武市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
灵武市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
灵武市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
灵武市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
灵武市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

灵武市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P,直线PF1(F1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为( )ABCD2 在ABC中,AB边上的中线CO=2,若动点P满足=(sin2)+(cos2)(R),则(+)的最小值是( )A1B1C2D03 集合A=1,2,3,集合B=1,1,3,集合S=AB,则集合S的子集有( )A2个B3 个C4 个D8个4 已知均为正实数,且,则( )A B C D5 已知等差数列的前项和为,且,在区间内任取一个实数作为数列的公差,则的最小值仅为的概率为( )A B C D6 对于任意两个正整数m,n,定义某种运算“”如下:当m,n都为正偶数或正奇数时,mn=m+n;当m,n中一个为正偶数,另一个为正奇数时,mn=mn则在此定义下,集合M=(a,b)|ab=12,aN*,bN*中的元素个数是( )A10个B15个C16个D18个7 定义运算:例如,则函数的值域为( )A B C D8 已知直线与圆交于两点,为直线上任意一点,则的面积为( )A B. C. D. 9 设集合,则( )ABCD10设x,y满足约束条件,则目标函数z=ax+by(a0,b0)的最大值为12,则+的最小值为( )ABC6D511命题:“xR,x2x+20”的否定是( )AxR,x2x+20BxR,x2x+20CxR,x2x+20DxR,x2x+2012已知实数a,b,c满足不等式0abc1,且M=2a,N=5b,P=()c,则M、N、P的大小关系为( )AMNPBPMNCNPM二、填空题13已知过球面上 三点的截面和球心的距离是球半径的一半,且,则球表面积是_.14已知关于的不等式的解集为,则关于的不等式的解集为_.15长方体中,对角线与棱、所成角分别为、,则 16若点p(1,1)为圆(x3)2+y2=9的弦MN的中点,则弦MN所在直线方程为 17一组数据2,x,4,6,10的平均值是5,则此组数据的标准差是18设向量a(1,1),b(0,t),若(2ab)a2,则t_三、解答题19【常州市2018届高三上武进区高中数学期中】已知函数,若曲线在点处的切线经过点,求实数的值;若函数在区间上单调,求实数的取值范围;设,若对,使得成立,求整数的最小值20请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm)(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值21已知点F(0,1),直线l1:y=1,直线l1l2于P,连结PF,作线段PF的垂直平分线交直线l2于点H设点H的轨迹为曲线r()求曲线r的方程;()过点P作曲线r的两条切线,切点分别为C,D,()求证:直线CD过定点;()若P(1,1),过点O作动直线L交曲线R于点A,B,直线CD交L于点Q,试探究+是否为定值?若是,求出该定值;不是,说明理由阿啊阿22(本小题满分12分)在多面体中,四边形与均为正方形,平面,平面,且(1)求证:平面平面;(2)求二面角的大小的余弦值 23已知函数的图象在y轴右侧的第一个最大值点和最小值点分别为(,2)和(4,2)(1)试求f(x)的解析式;(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数y=g(x)的图象写出函数y=g(x)的解析式24如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M,N均在直线x=5上,圆弧C1的圆心是坐标原点O,半径为13;圆弧C2过点A(29,0)(1)求圆弧C2的方程;(2)曲线C上是否存在点P,满足?若存在,指出有几个这样的点;若不存在,请说明理由 灵武市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】D【解析】解:设F2为椭圆的右焦点由题意可得:圆与椭圆交于P,并且直线PF1(F1为椭圆的左焦点)是该圆的切线,所以点P是切点,所以PF2=c并且PF1PF2又因为F1F2=2c,所以PF1F2=30,所以根据椭圆的定义可得|PF1|+|PF2|=2a,所以|PF2|=2ac所以2ac=,所以e=故选D【点评】解决此类问题的关键是熟练掌握直线与圆的相切问题,以即椭圆的定义2 【答案】 C【解析】解: =(sin2)+(cos2)(R),且sin2+cos2=1,=(1cos2)+(cos2)=+cos2(),即=cos2(),可得=cos2,又cos20,1,P在线段OC上,由于AB边上的中线CO=2,因此(+)=2,设|=t,t0,2,可得(+)=2t(2t)=2t24t=2(t1)22,当t=1时,( +)的最小值等于2故选C【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题3 【答案】C【解析】解:集合A=1,2,3,集合B=1,1,3,集合S=AB=1,3,则集合S的子集有22=4个,故选:C【点评】本题主要考查集合的基本运算和集合子集个数的求解,要求熟练掌握集合的交并补运算,比较基础4 【答案】A【解析】考点:对数函数,指数函数性质5 【答案】D【解析】考点:等差数列6 【答案】B【解析】解:ab=12,a、bN*,若a和b一奇一偶,则ab=12,满足此条件的有112=34,故点(a,b)有4个;若a和b同奇偶,则a+b=12,满足此条件的有1+11=2+10=3+9=4+8=5+7=6+6共6组,故点(a,b)有261=11个,所以满足条件的个数为4+11=15个故选B7 【答案】D【解析】考点:1、分段函数的解析式;2、三角函数的最值及新定义问题. 8 【答案】 C 【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.圆心到直线的距离,两平行直线之间的距离为,的面积为,选C9 【答案】C【解析】送分题,直接考察补集的概念,故选C。10【答案】 B【解析】解:不等式组表示的平面区域如图所示阴影部分,当直线ax+by=z(a0,b0)过直线xy+2=0与直线3xy6=0的交点(4,6)时,目标函数z=ax+by(a0,b0)取得最大12,即4a+6b=12,即2a+3b=6,而=()=+()=,当且仅当a=b=,取最小值故选B11【答案】B【解析】解:因为全称命题的否定是特称命题,所以命题:“xR,x2x+20”的否定是xR,x2x+20故选:B【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查12【答案】A【解析】解:0abc1,12a2,5b1,()c1,5b=()b()c()c,即MNP,故选:A【点评】本题主要考查函数值的大小比较,根据幂函数和指数函数的单调性的性质是解决本题的关键二、填空题13【答案】【解析】111考点:球的体积和表面积.【方法点晴】本题主要考查了球的表面积和体积的问题,其中解答中涉及到截面圆圆心与球心的连线垂直于截面,球的性质、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记球的截面圆圆心的性质,求出球的半径是解答的关键.14【答案】【解析】考点:一元二次不等式的解法.15【答案】【解析】试题分析:以为斜边构成直角三角形:,由长方体的对角线定理可得:.考点:直线与直线所成的角【方法点晴】本题主要考查了空间中直线与直线所成的角的计算问题,其中解答中涉及到长方体的结构特征、直角三角形中三角函数的定义、长方体的对角线长公式等知识点的考查,着重考查学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直角三角形中三角函数的定义和长方体的对角线长定理是解答的关键16【答案】:2xy1=0解:P(1,1)为圆(x3)2+y2=9的弦MN的中点,圆心与点P确定的直线斜率为=,弦MN所在直线的斜率为2,则弦MN所在直线的方程为y1=2(x1),即2xy1=0故答案为:2xy1=017【答案】2 【解析】解:一组数据2,x,4,6,10的平均值是5,2+x+4+6+10=55,解得x=3,此组数据的方差 (25)2+(35)2+(45)2+(65)2+(105)2=8,此组数据的标准差S=2故答案为:2【点评】本题考查一组数据的标准差的求法,解题时要认真审题,注意数据的平均数和方差公式的求法18【答案】【解析】(2ab)a(2,2t)(1,1)21(2t)(1)4t2,t2.答案:2三、解答题19【答案】【解析】试题分析:(1)根据题意,对函数求导,由导数的几何意义分析可得曲线 在点处的切线方程,代入点,计算可得答案;(2)由函数的导数与函数单调性的关系,分函数在(上单调增与单调减两种情况讨论,综合即可得答案;(3)由题意得, 分析可得必有 ,对求导,对分类讨论即可得答案试题解析:,若函数在区间上单调递增,则在恒成立,得; 若函数在区间上单调递减,则在恒成立,得, 综上,实数的取值范围为;由题意得,即,由,当时,则不合题意;当时,由,得或(舍去),当时,单调递减,当时,单调递增,即,整理得, 设,单调递增,为偶数,又,故整数的最小值为。20【答案】 【解析】解:设包装盒的高为h(cm),底面边长为a(cm),则a=x,h=(30x),0x30(1)S=4ah=8x(30x)=8(x15)2+1800,当x=15时,S取最大值(2)V=a2h=2(x3+30x2),V=6x(20x),由V=0得x=20,当x(0,20)时,V0;当x(20,30)时,V0;当x=20时,包装盒容积V(cm3)最大,此时,即此时包装盒的高与底面边长的比值是21【答案】 【解析】满分(13分)解:()由题意可知,|HF|=|HP|,点H到点F(0,1)的距离与到直线l1:y=1的距离相等,(2分)点H的轨迹是以点F(0,1)为焦点,直线l1:y=1为准线的抛物线,(3分)点H的轨迹方程为x2=4y(4分)()()证明:设P(x1,1),切点C(xC,yC),D(xD,yD)由y=,得直线PC:y+1=xC(xx1),(5分)又PC过点C,yC=,yC+1=xC(xx1)=xCx1,yC+1=,即(6分)同理,直线CD的方程为,(7分)直线CD过定点(0,1)(8分)()由()()P(1,1)在直线CD的方程为,得x1=1,直线CD的方程为设l:y+1=k(x1),与方程联立,求得xQ=(9分)设A(xA,yA),B(xB,yB)联立y+1=k(x1)与x2=4y,得x24kx+4k+4=0,由根与系数的关系,得xA+xB=4kxAxB=4k+4(10分)xQ1,xA1,xB1同号,+=|PQ|=(11分)=,+为定值,定值为2(13分)【点评】本题主要考查直线、抛物线、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、化归与转化思想,考查考生分析问题和解决问题的能力22【答案】【解析】【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,意在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想平面,平面平面5分23【答案】 【解析】(本题满分为12分)解:(1)由题意知:A=2,T=6,=6得=,f(x)=2sin(x+),函数图象过(,2),sin(+)=1,+,+=,得=A=2,=,=,f(x)=2sin(x+)(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),可得函数y=2sin(x+)的图象,然后再将新的图象向轴正方向平移个单位,得到函数g(x)=2sin(x)+=2sin()的图象故y=g(x)的解析式为:g(x)=2sin()【点评】本题主要考查了由y=Asin(x+)的部分图象确定其解析式,考查了函数y=Asin(x+)的图象变换,函数y=Asin(x+)的解析式的求法,其中根据已知求出函数的最值,周期,向左平移量,特殊点等,进而求出A,值,得到函数的解析式是解答本题的关键24【答案】 【解析】解:(1)圆弧 C1所在圆的方程为 x2+y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论