




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
寿县实验中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 在“唱响内江”选拔赛中,甲、乙两位歌手的5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别、,则下列判断正确的是( )A,乙比甲成绩稳定B,甲比乙成绩稳定C,甲比乙成绩稳定D,乙比甲成绩稳定2 若ab0,则下列不等式不成立是( )ABC|a|b|Da2b23 已知ABC的周长为20,且顶点B (0,4),C (0,4),则顶点A的轨迹方程是( )A(x0) B(x0)C(x0) D(x0)4 已知集合( )A B C D【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力5 已知函数f(x)满足f(x)=f(x),且当x(,)时,f(x)=ex+sinx,则( )ABCD6 已知函数,关于的方程()有3个相异的实数根,则的取值范围是( )A B C D【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力7 若向量=(3,m),=(2,1),则实数m的值为( )ABC2D68 已知集合A=0,1,2,则集合B=xy|xA,yA的元素个数为( )A4B5C6D99 设集合,则( )A. B. C. D. 【命题意图】本题主要考查集合的概念与运算,属容易题.10设偶函数f(x)满足f(x)=2x4(x0),则x|f(x2)0=( )Ax|x2或x4Bx|x0或x4Cx|x0或x6Dx|0x4 11已知函数f(x)=2ax33x2+1,若 f(x)存在唯一的零点x0,且x00,则a的取值范围是( )A(1,+)B(0,1)C(1,0)D(,1)12在平行四边形ABCD中,AC为一条对角线, =(2,4),=(1,3),则等于( )A(2,4)B(3,5)C(3,5)D(2,4)二、填空题13已知实数x,y满足约束条,则z=的最小值为14已知的面积为,三内角,的对边分别为,若,则取最大值时 15已知定义域为(0,+)的函数f(x)满足:(1)对任意x(0,+),恒有f(2x)=2f(x)成立;(2)当x(1,2时,f(x)=2x给出如下结论:对任意mZ,有f(2m)=0;函数f(x)的值域为0,+);存在nZ,使得f(2n+1)=9;“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在kZ,使得(a,b)(2k,2k+1)”;其中所有正确结论的序号是16设某总体是由编号为的20个个体组成,利用下面的随机数表选取个个体,选取方法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为_1818 0792 4544 1716 5809 7983 86196206 7650 0310 5523 6405 0526 6238【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想17在直角梯形分别为的中点,点在以为圆心,为半径的圆弧上变动(如图所示)若,其中,则的取值范围是_18有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同三个房间的粉刷面积和三种颜色的涂料费用如下表:那么在所有不同的粉刷方案中,最低的涂料总费用是_元三、解答题19已知数列an的首项为1,前n项和Sn满足=+1(n2)()求Sn与数列an的通项公式;()设bn=(nN*),求使不等式b1+b2+bn成立的最小正整数n20已知函数f(x)=4xa2x+1+a+1,aR(1)当a=1时,解方程f(x)1=0;(2)当0x1时,f(x)0恒成立,求a的取值范围;(3)若函数f(x)有零点,求实数a的取值范围 21已知矩阵M所对应的线性变换把点A(x,y)变成点A(13,5),试求M的逆矩阵及点A的坐标 22已知cos(+)=,求的值23已知点F(0,1),直线l1:y=1,直线l1l2于P,连结PF,作线段PF的垂直平分线交直线l2于点H设点H的轨迹为曲线r()求曲线r的方程;()过点P作曲线r的两条切线,切点分别为C,D,()求证:直线CD过定点;()若P(1,1),过点O作动直线L交曲线R于点A,B,直线CD交L于点Q,试探究+是否为定值?若是,求出该定值;不是,说明理由阿啊阿24已知数列an满足a1=3,an+1=an+p3n(nN*,p为常数),a1,a2+6,a3成等差数列(1)求p的值及数列an的通项公式;(2)设数列bn满足bn=,证明bn寿县实验中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】A【解析】解:由茎叶图可知=(77+76+88+90+94)=,=(75+86+88+88+93)=86,则,乙的成绩主要集中在88附近,乙比甲成绩稳定,故选:A【点评】本题主要考查茎叶图的应用,根据平均数和数据的稳定性是解决本题的关键2 【答案】A【解析】解:ab0,ab0,|a|b|,a2b2,即,可知:B,C,D都正确,因此A不正确故选:A【点评】本题考查了不等式的基本性质,属于基础题3 【答案】B【解析】解:ABC的周长为20,顶点B (0,4),C (0,4),BC=8,AB+AC=208=12,128点A到两个定点的距离之和等于定值,点A的轨迹是椭圆,a=6,c=4b2=20,椭圆的方程是故选B【点评】本题考查椭圆的定义,注意椭圆的定义中要检验两个线段的大小,看能不能构成椭圆,本题是一个易错题,容易忽略掉不合题意的点4 【答案】D【解析】,故选D.5 【答案】D【解析】解:由f(x)=f(x)知,f()=f()=f(),当x(,)时,f(x)=ex+sinx为增函数,f()f()f(),f()f()f(),故选:D6 【答案】D第卷(共90分)7 【答案】A【解析】解:因为向量=(3,m),=(2,1),所以3=2m,解得m=故选:A【点评】本题考查向量共线的充要条件的应用,基本知识的考查8 【答案】B【解析】解:x=0时,y=0,1,2,xy=0,1,2;x=1时,y=0,1,2,xy=1,0,1;x=2时,y=0,1,2,xy=2,1,0;B=0,1,2,1,2,共5个元素故选:B9 【答案】B【解析】易知,所以,故选B.10【答案】D【解析】解:偶函数f(x)=2x4(x0),故它的图象关于y轴对称,且图象经过点(2,0)、(0,3),(2,0),故f(x2)的图象是把f(x)的图象向右平移2个单位得到的,故f(x2)的图象经过点(0,0)、(2,3),(4,0),则由f(x2)0,可得 0x4,故选:D【点评】本题主要考查指数不等式的解法,函数的图象的平移规律,属于中档题11【答案】D【解析】解:若a=0,则函数f(x)=3x2+1,有两个零点,不满足条件若a0,函数的f(x)的导数f(x)=6ax26x=6ax(x),若 f(x)存在唯一的零点x0,且x00,若a0,由f(x)0得x或x0,此时函数单调递增,由f(x)0得0x,此时函数单调递减,故函数在x=0处取得极大值f(0)=10,在x=处取得极小值f(),若x00,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件若a0,由f(x)0得x0,此时函数递增,由f(x)0得x或x0,此时函数单调递减,即函数在x=0处取得极大值f(0)=10,在x=处取得极小值f(),若存在唯一的零点x0,且x00,则f()0,即2a()33()2+10,()21,即10,解得a1,故选:D【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键注意分类讨论12【答案】C【解析】解:,=(3,5)故选:C【点评】本题考查向量的基本运算,向量的坐标求法,考查计算能力二、填空题13【答案】 【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由z=32x+y,设t=2x+y,则y=2x+t,平移直线y=2x+t,由图象可知当直线y=2x+t经过点B时,直线y=2x+t的截距最小,此时t最小由,解得,即B(3,3),代入t=2x+y得t=2(3)+3=3t最小为3,z有最小值为z=33=故答案为:【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法14【答案】【解析】考点:1、余弦定理及三角形面积公式;2、两角和的正弦、余弦公式及特殊角的三角函数.1【方法点睛】本题主要考查余弦定理及三角形面积公式、两角和的正弦、余弦公式及特殊角的三角函数,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.一般来说 ,当条件中同时出现 及 、 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答,解三角形时三角形面积公式往往根据不同情况选用下列不同形式.15【答案】 【解析】解:x(1,2时,f(x)=2xf(2)=0f(1)=f(2)=0f(2x)=2f(x),f(2kx)=2kf(x)f(2m)=f(22m1)=2f(2m1)=2m1f(2)=0,故正确;设x(2,4时,则x(1,2,f(x)=2f()=4x0若x(4,8时,则x(2,4,f(x)=2f()=8x0一般地当x(2m,2m+1),则(1,2,f(x)=2m+1x0,从而f(x)0,+),故正确;由知当x(2m,2m+1),f(x)=2m+1x0,f(2n+1)=2n+12n1=2n1,假设存在n使f(2n+1)=9,即2n1=9,2n=10,nZ,2n=10不成立,故错误;由知当x(2k,2k+1)时,f(x)=2k+1x单调递减,为减函数,若(a,b)(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确故答案为:16【答案】19【解析】由题意可得,选取的这6个个体分别为18,07,17,16,09,19,故选出的第6个个体编号为1917【答案】【解析】考点:向量运算【思路点晴】本题主要考查向量运算的坐标法. 平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决18【答案】1464【解析】【知识点】函数模型及其应用【试题解析】显然,面积大的房间用费用低的涂料,所以房间A用涂料1,房间B用涂料3,房间C用涂料2,即最低的涂料总费用是元。故答案为:1464三、解答题19【答案】 【解析】解:()因为=+1(n2),所以是首项为1,公差为1的等差数列,则=1+(n1)1=n,从而Sn=n2当n=1时,a1=S1=1,当n1时,an=SnSn1=n2(n1)2=2n1因为a1=1也符合上式,所以an=2n1()由()知bn=,所以b1+b2+bn=,由,解得n12所以使不等式成立的最小正整数为13【点评】本小题主要考查数列、不等式等基础知识,考查运算求解能力,考查化归与转化思想20【答案】 【解析】解:(1)a=1时,f(x)=4x22x+2,f(x)1=(2x)22(2x)+1=(2x1)2=0,2x=1,解得:x=0;(2)4xa(2x+11)+10在(0,1)恒成立,a(22x1)4x+1,2x+11,a,令2x=t(1,2),g(t)=,则g(t)=0,t=t0,g(t)在(1,t0)递减,在(t0,2)递增,而g(1)=2,g(2)=,a2;(3)若函数f(x)有零点,则a=有交点,由(2)令g(t)=0,解得:t=,故a【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及函数零点问题,是一道中档题21【答案】 【解析】解:依题意,由M=得|M|=1,故M1=从而由=得=故A(2,3)为所求【点评】此题考查学生会求矩阵的逆矩阵及掌握矩阵的线性变换,考查学生的计算能力,比较基础 22【答案】 【解析】解:, +(,),cos(+)=,sin(+)=,sin(+)=sincos+cossin=(cos+sin)=,sin+cos=,cos(+)=coscossinsin=(coscos)=,cossin=,联立,得cos=,sin=,=【点评】本题考查函数值的求法,是中档题,解题时要认真审题,注意三角函数诱导公式、加法定理和同角三角函数关系式的合理运用23【答案】 【解析】满分(13分)解:()由题意可知,|HF|=|HP|,点H到点F(0,1)的距离与到直线l1:y=1的距离相等,(2分)点H的轨迹是以点F(0,1)为焦点,直线l1:y=1为准线的抛物线,(3分)点H的轨迹方程为x2=4y(4分)()()证明:设P(x1,1),切点C(xC,yC),D(xD,yD)由y=,得直线PC:y+1=xC(xx1),(5分)又PC过点C,yC=,yC+1=xC(xx1)=xCx1,yC+1=,即(6分)同理,直线CD的方程为,(7分)直线CD过定点(0,1)(8分)()由()()P(1,1)在直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025甘肃定西市陇西县招聘城镇公益性岗位人员28人考前自测高频考点模拟试题及答案详解(网校专用)
- 2025广东云浮市郁南县林业局招聘生态管护人员2人考前自测高频考点模拟试题及答案详解(新)
- 2025年湖南长沙市一中青竹湖湘一教育集团公开招聘教师50人模拟试卷及答案详解(全优)
- 2025年高硅氧玻璃纤维布合作协议书
- 安全培训教室必要性课件
- 小学安全员培训材料课件
- 2025贵州金丽农业旅游产业发展集团有限公司招聘经理层高级管理人员(财务总监)1人模拟试卷及参考答案详解
- 2025年可穿戴运动手环项目发展计划
- 2025年应急管理部所属单位第二批次公开招聘(秦皇岛有岗)考前自测高频考点模拟试题及一套答案详解
- 个人股份转让合同协议书8篇
- 质量意识题目及答案
- 家装方案汇报讲解
- 小学数学命题培训课件
- 重点实验室开放管理办法
- 安全工作三管三必须是什么
- 国企运营资产管理办法
- 中国手机美容市场深度调研分析及投资前景研究预测报告
- 校园导向标识设计
- 2025垂直领域具身智能机器人产业化落地现状及潜力应用场景分析报告
- 大班徒步秋游活动方案
- 成人高考计算机毕业论文
评论
0/150
提交评论