




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
雅江县高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知ab0,那么下列不等式成立的是( )AabBa+cb+cC(a)2(b)2D2 设是偶函数,且在上是增函数,又,则使的的取值范围是( )A或 B或 C D或3 已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为( )A B C D4 若数列an的通项公式an=5()2n24()n1(nN*),an的最大项为第p项,最小项为第q项,则qp等于( )A1B2C3D45 若a=ln2,b=5,c=xdx,则a,b,c的大小关系( )AabcBBbacCCbcaDcba6 已知复数z满足zi=2i,i为虚数单位,则z=( )A12iB1+2iC12iD1+2i7 已知直线x+ay1=0是圆C:x2+y24x2y+1=0的对称轴,过点A(4,a)作圆C的一条切线,切点为B,则|AB|=( )A2B6C4D28 设函数,若对任意,都存在,使得,则实数的最大值为( )A B C. D49 已知点M(6,5)在双曲线C:=1(a0,b0)上,双曲线C的焦距为12,则它的渐近线方程为( )Ay=xBy=xCy=xDy=x10过抛物线焦点的直线与双曲线的一条渐近线平行,并交其抛物线于、两点,若,且,则抛物线方程为( )A B C D【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力11过点P(2,2)作直线l,使直线l与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l一共有( )A3条B2条C1条D0条12在平面直角坐标系中,直线y=x与圆x2+y28x+4=0交于A、B两点,则线段AB的长为( )A4B4C2D2二、填空题13已知椭圆+=1(ab0)上一点A关于原点的对称点为B,F为其左焦点,若AFBF,设ABF=,且,则该椭圆离心率e的取值范围为14设满足条件,若有最小值,则的取值范围为 15已知f(x)x(exaex)为偶函数,则a_16等比数列an的公比q=,a6=1,则S6=17设a抛掷一枚骰子得到的点数,则方程x2+ax+a=0有两个不等实数根的概率为18已知奇函数f(x)的定义域为2,2,且在定义域上单调递减,则满足不等式f(1m)+f(12m)0的实数m的取值范围是三、解答题19提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20x200时,车流速度v是车流密度x的一次函数()当0x200时,求函数v(x)的表达式;()当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值(精确到1辆/小时) 20【南师附中2017届高三模拟二】已知函数(1)试讨论的单调性;(2)证明:对于正数,存在正数,使得当时,有;(3)设(1)中的的最大值为,求得最大值21.(1)求函数的单调递减区间;(2)在中,角的对边分别为,若,的面积为,求的最小值. 22某校为选拔参加“央视猜灯谜大赛”的队员,在校内组织猜灯谜竞赛规定:第一阶段知识测试成绩不小于160分的学生进入第二阶段比赛现有200名学生参加知识测试,并将所有测试成绩绘制成如下所示的频率分布直方图()估算这200名学生测试成绩的中位数,并求进入第二阶段比赛的学生人数;()将进入第二阶段的学生分成若干队进行比赛现甲、乙两队在比赛中均已获得120分,进入最后抢答阶段抢答规则:抢到的队每次需猜3条谜语,猜对1条得20分,猜错1条扣20分根据经验,甲队猜对每条谜语的概率均为,乙队猜对前两条的概率均为,猜对第3条的概率为若这两队抢到答题的机会均等,您做为场外观众想支持这两队中的优胜队,会把支持票投给哪队?23(本小题满分10分)已知圆过点,.(1)若圆还过点,求圆的方程; (2)若圆心的纵坐标为,求圆的方程.24设集合(1)若,判断集合与的关系;(2)若,求实数组成的集合雅江县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:ab0,ab0,(a)2(b)2,故选C【点评】本题主要考查不等式的基本性质的应用,属于基础题2 【答案】B考点:函数的奇偶性与单调性【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于轴对称,单调性在轴两侧相反,即在时单调递增,当时,函数单调递减.结合和对称性,可知,再结合函数的单调性,结合图象就可以求得最后的解集.13 【答案】【解析】试题分析:,故选B.考点:1.三视图;2.几何体的体积.4 【答案】A【解析】解:设=t(0,1,an=5()2n24()n1(nN*),an=5t24t=,an,当且仅当n=1时,t=1,此时an取得最大值;同理n=2时,an取得最小值qp=21=1,故选:A【点评】本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,属于中档题5 【答案】C【解析】解: a=ln2lne即,b=5=,c=xdx=,a,b,c的大小关系为:bca故选:C【点评】本题考查了不等式大小的比较,关键是求出它们的取值范围,是基础题6 【答案】A【解析】解:由zi=2i得,故选A7 【答案】B【解析】解:圆C:x2+y24x2y+1=0,即(x2)2+(y1)2 =4,表示以C(2,1)为圆心、半径等于2的圆由题意可得,直线l:x+ay1=0经过圆C的圆心(2,1),故有2+a1=0,a=1,点A(4,1)AC=2,CB=R=2,切线的长|AB|=6故选:B【点评】本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题8 【答案】A111.Com【解析】试题分析:设的值域为,因为函数在上的值域为,所以,因此至少要取遍中的每一个数,又,于是,实数需要满足或,解得考点:函数的性质.【方法点晴】本题主要考查函数的性质用,涉及数形结合思想、函数与方程思想、转和化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型。首先求出,再利用转化思想将命题条件转化为,进而转化为至少要取遍中的每一个数,再利用数形结合思想建立不等式组:或,从而解得9 【答案】A【解析】解:点M(6,5)在双曲线C:=1(a0,b0)上,又双曲线C的焦距为12,12=2,即a2+b2=36,联立、,可得a2=16,b2=20,渐近线方程为:y=x=x,故选:A【点评】本题考查求双曲线的渐近线,注意解题方法的积累,属于基础题10【答案】C【解析】由已知得双曲线的一条渐近线方程为,设,则,所以,解得或,因为,故,故,所以抛物线方程为11【答案】C【解析】解:假设存在过点P(2,2)的直线l,使它与两坐标轴围成的三角形的面积为8,设直线l的方程为:,则即2a2b=ab直线l与两坐标轴在第二象限内围成的三角形面积S=ab=8,即ab=16,联立,解得:a=4,b=4直线l的方程为:,即xy+4=0,即这样的直线有且只有一条,故选:C【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题12【答案】A【解析】解:圆x2+y28x+4=0,即圆(x4)2+y2 =12,圆心(4,0)、半径等于2由于弦心距d=2,弦长为2=4,故选:A【点评】本题主要考查求圆的标准方程的方法,直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,属于基础题二、填空题13【答案】,1 【解析】解:设点A(acos,bsin),则B(acos,bsin)(0);F(c,0);AFBF,=0,即(cacos,bsin)(c+acos,bsin)=0,故c2a2cos2b2sin2=0,cos2=2,故cos=,而|AF|=,|AB|=2c,而sin=,sin,+,即,解得,e1;故答案为:,1【点评】本题考查了圆锥曲线与直线的位置关系的应用及平面向量的应用,同时考查了三角函数的应用14【答案】【解析】解析:不等式表示的平面区域如图所示,由得,当时,平移直线可知,既没有最大值,也没有最小值;当时,平移直线可知,在点A处取得最小值;当时,平移直线可知,既没有最大值,也没有最小值;当时,平移直线可知,在点A处取得最大值,综上所述,15【答案】【解析】解析:f(x)是偶函数,f(x)f(x)恒成立,即(x)(exaex)x(exaex),a(exex)(exex),a1.答案:116【答案】21 【解析】解:等比数列an的公比q=,a6=1,a1()5=1,解得a1=32,S6=21故答案为:2117【答案】 【解析】解:a是甲抛掷一枚骰子得到的点数,试验发生包含的事件数6,方程x2+ax+a=0 有两个不等实根,a24a0,解得a4,a是正整数,a=5,6,即满足条件的事件有2种结果,所求的概率是=,故答案为:【点评】本题考查等可能事件的概率,在解题过程中应用列举法来列举出所有的满足条件的事件数,是解题的关键18【答案】, 【解析】解:函数奇函数f(x)的定义域为2,2,且在定义域上单调递减,不等式f(1m)+f(12m)0等价为f(1m)f(12m)=f(2m1),即,即,得m,故答案为:,【点评】本题主要考查不等式的求解,根据函数奇偶性将不等式进行转化是解决本题的关键注意定义域的限制三、解答题19【答案】 【解析】解:() 由题意:当0x20时,v(x)=60;当20x200时,设v(x)=ax+b再由已知得,解得故函数v(x)的表达式为()依题并由()可得当0x20时,f(x)为增函数,故当x=20时,其最大值为6020=1200当20x200时,当且仅当x=200x,即x=100时,等号成立所以,当x=100时,f(x)在区间(20,200上取得最大值综上所述,当x=100时,f(x)在区间0,200上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时答:() 函数v(x)的表达式() 当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时 20【答案】(1)证明过程如解析;(2)对于正数,存在正数,使得当时,有;(3)的最大值为【解析】【试题分析】(1)先对函数进行求导,再对导函数的值的符号进行分析,进而做出判断;(2)先求出函数值,进而分和两种情形进行分析讨论,推断出存在使得,从而证得当时,有成立;(3)借助(2)的结论在上有最小值为,然后分两种情形探求的解析表达式和最大值。证明:(1)由于,且,故在上单调递减,在上单调递增(3)由(2)知在上的最小值为当时,则是方程满足的实根,即满足的实根,所以又在上单调递增,故当时,由于,故此时,综上所述,的最大值为21【答案】(1)();(2).【解析】试题分析:(1)根据可求得函数的单调递减区间;(2)由可得,再由三角形面积公式可得,根据余弦定理及基本不等式可得的最小值. 1试题解析:(1),令,解得,的单调递减区间为().考点:1、正弦函数的图象和性质;2、余弦定理、基本不等式等知识的综合运用22【答案】 【解析】解:()设测试成绩的中位数为x,由频率分布直方图得,(0.0015+0.019)20+(x140)0.025=0.5,解得:x=143.6测试成绩中位数为143.6进入第二阶段的学生人数为200(0.003+0.0015)20=18人()设最后抢答阶段甲、乙两队猜对灯谜的条数分别为、,则B(3,),E()=最后抢答阶段甲队得分的期望为20=30,P(=0)=,P(=1)=,P(=2)=,P(=3)=,E=最后抢答阶段乙队得分的期望为20=24120+30120+24,支持票投给甲队【点评】本小题主要考查概率、概率与统计等基础知识,考查推理论证能力、数据处理能力、运算求解能力及应用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年4月重庆市妇幼保健院部分岗位招聘模拟试卷附答案详解(模拟题)
- 2025江西吉安市吉水县吉瑞招商运营有限公司面向社会招聘1人模拟试卷含答案详解
- 2025贵州省文化和旅游厅所属事业单位第十三届人博会引进人才3人模拟试卷及完整答案详解1套
- 2025贵州惠水县公益性岗位招聘4人考前自测高频考点模拟试题有答案详解
- 2025标准车辆买卖合同模板
- 2025内蒙古鑫和资源投资集团有限责任公司招聘26名模拟试卷含答案详解
- 2025规范的劳动合同样本
- 2025江西九江市武宁县医疗卫生单位招聘劳务派遣人员3人考前自测高频考点模拟试题及1套参考答案详解
- 2025年河北石家庄海关技术中心公开招聘劳务派遣类工作人员2名模拟试卷及参考答案详解1套
- 2025年深圳房地产中介服务合同
- 煤矿掘进知识课件
- 《陆上风电场工程设计概算编制规定及费用标准》(NB-T 31011-2019)
- 创业投资免责声明范本
- (高清版)TDT 1001-2012 地籍调查规程
- 办案审讯员培训课件模板
- 内部审计管理系统建设需求
- 员工绩效汇报
- 环卫所内勤工作事迹
- 注塑设备维修培训课件模板
- 燃气输配课程设计说明书
- 应急预案管理中的法律风险与责任防控
评论
0/150
提交评论