已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
千山区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知函数满足,且,分别是上的偶函数和奇函数,若使得不等式恒成立,则实数的取值范围是( )A B C D2 已知集合,若,则( )A B C或 D或3 已知三个数,成等比数列,其倒数重新排列后为递增的等比数列的前三项,则能使不等式成立的自然数的最大值为( )A9 B8 C.7 D54 设集合A=x|2x4,集合B=x|y=lg(x1),则AB等于( )A(1,2)B1,2C1,2)D(1,25 i是虚数单位,计算i+i2+i3=( )A1B1CiDi6 设0a1,实数x,y满足,则y关于x的函数的图象形状大致是( )ABCD7 函数y=2|x|的定义域为a,b,值域为1,16,当a变动时,函数b=g(a)的图象可以是( )ABCD8 已知曲线C1:y=ex上一点A(x1,y1),曲线C2:y=1+ln(xm)(m0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|e恒成立,则m的最小值为( )A1BCe1De+19 如果对定义在上的函数,对任意,均有成立,则称函数为“函数”.给出下列函数:;其中函数是“函数”的个数为( )A1 B2 C3 D 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大10已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( )ABCD =0.08x+1.2311“方程+=1表示椭圆”是“3m5”的( )条件A必要不充分B充要C充分不必要D不充分不必要12为了得到函数y=sin3x的图象,可以将函数y=sin(3x+)的图象( )A向右平移个单位B向右平移个单位C向左平移个单位D向左平移个单位二、填空题13如果定义在R上的函数f(x),对任意x1x2都有x1f(x1)+x2f(x2)x1f(x2)+x2(fx1),则称函数为“H函数”,给出下列函数f(x)=3x+1 f(x)=()x+1f(x)=x2+1 f(x)=其中是“H函数”的有(填序号)14已知平面向量,的夹角为,向量,的夹角为,则与的夹角为_,的最大值为 【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力.15如图,正方形的边长为1,它是水平放置的一个平面图形的直观图,则原图的周长为 111116对于|q|1(q为公比)的无穷等比数列an(即项数是无穷项),我们定义Sn(其中Sn是数列an的前n项的和)为它的各项的和,记为S,即S=Sn=,则循环小数0. 的分数形式是17某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为18函数f(x)=ax+4的图象恒过定点P,则P点坐标是三、解答题19甲、乙两位选手为为备战我市即将举办的“推广妈祖文化印象莆田”知识竞赛活动,进行针对性训练,近8次的训练成绩如下(单位:分):甲8381937978848894乙8789897774788898()依据上述数据,从平均水平和发挥的稳定程度考虑,你认为应派哪位选手参加?并说明理由;()本次竞赛设置A、B两问题,规定:问题A的得分不低于80分时答题成功,否则答题失败,答题成功可获得价值100元的奖品,问题B的得分不低于90分时答题成功,否则答题失败,答题成功可获得价值300元的奖品答题顺序可自由选择,但答题失败则终止答题选手答题问题A,B成功与否互不影响,且以训练成绩作为样本,将样本频率视为概率,请问在(I)中被选中的选手应选择何种答题顺序,使获得的奖品价值更高?并说明理由20设F是抛物线G:x2=4y的焦点(1)过点P(0,4)作抛物线G的切线,求切线方程;(2)设A,B为抛物线上异于原点的两点,且满足FAFB,延长AF,BF分别交抛物线G于点C,D,求四边形ABCD面积的最小值21在ABC中,内角A,B,C的对边分别为a、b、c,且bsinA=acosB(1)求B;(2)若b=2,求ABC面积的最大值22设函数f(x)=x2ex(1)求f(x)的单调区间;(2)若当x2,2时,不等式f(x)m恒成立,求实数m的取值范围23(本小题满分12分)设,满足(1)求的值;(2)求的值24已知cos(+)=,求的值千山区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】试题分析:因为函数满足,且分别是上的偶函数和奇函数, 使得不等式恒成立, 即恒成立, , 设,则函数在上单调递增, 此时不等式,当且仅当,即时, 取等号,故选B. 考点:1、函数奇偶性的性质;2、不等式恒成立问题及函数的最值.【方法点晴】本题主要考查函数奇偶性的性质、不等式恒成立问题及函数的最值,属于难题不等式恒成立问题常见方法:分离参数恒成立(即可)或恒成立(即可);数形结合;讨论最值或恒成立;讨论参数 .本题是利用方法求得的最大值的. 2 【答案】D【解析】试题分析:由,集合,又,或,故选D考点:交集及其运算3 【答案】C 【解析】试题分析:因为三个数等比数列,所以,倒数重新排列后恰好为递增的等比数列的前三项,为,公比为,数列是以为首项,为公比的等比数列,则不等式等价为,整理,得,故选C. 1考点:1、等比数列的性质;2、等比数列前项和公式.4 【答案】D【解析】解:A=x|2x4=x|x2,由x10得x1B=x|y=lg(x1)=x|x1AB=x|1x2故选D5 【答案】A【解析】解:由复数性质知:i2=1故i+i2+i3=i+(1)+(i)=1故选A【点评】本题考查复数幂的运算,是基础题6 【答案】A【解析】解:0a1,实数x,y满足,即y=,故函数y为偶函数,它的图象关于y轴对称,在(0,+)上单调递增,且函数的图象经过点(0,1),故选:A【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题7 【答案】B【解析】解:根据选项可知a0a变动时,函数y=2|x|的定义域为a,b,值域为1,16,2|b|=16,b=4故选B【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题8 【答案】C【解析】解:当y1=y2时,对于任意x1,x2,都有|AB|e恒成立,可得: =1+ln(x2m),x2x1e,01+ln(x2m),lnxx1(x1),考虑x2m1时1+ln(x2m)x2m,令x2m,化为mxexe,xm+令f(x)=xexe,则f(x)=1exe,可得x=e时,f(x)取得最大值me1故选:C9 【答案】第10【答案】C【解析】解:法一:由回归直线的斜率的估计值为1.23,可排除D由线性回归直线方程样本点的中心为(4,5),将x=4分别代入A、B、C,其值依次为8.92、9.92、5,排除A、B法二:因为回归直线方程一定过样本中心点,将样本点的中心(4,5)分别代入各个选项,只有C满足,故选C【点评】本题提供的两种方法,其实原理都是一样的,都是运用了样本中心点的坐标满足回归直线方程11【答案】C【解析】解:若方程+=1表示椭圆,则满足,即,即3m5且m1,此时3m5成立,即充分性成立,当m=1时,满足3m5,但此时方程+=1即为x2+y2=4为圆,不是椭圆,不满足条件即必要性不成立故“方程+=1表示椭圆”是“3m5”的充分不必要条件故选:C【点评】本题主要考查充分条件和必要条件的判断,考查椭圆的标准方程,根据椭圆的定义和方程是解决本题的关键,是基础题12【答案】A【解析】解:由于函数y=sin(3x+)=sin3(x+)的图象向右平移个单位,即可得到y=sin3(x+)= sin3x的图象,故选:A【点评】本题主要考查函数y=Asin(x+)的图象平移变换,属于中档题二、填空题13【答案】 【解析】解:对于任意给定的不等实数x1,x2,不等式x1f(x1)+x2f(x2)x1f(x2)+x2f(x1)恒成立,不等式等价为(x1x2)f(x1)f(x2)0恒成立,即函数f(x)是定义在R上的不减函数(即无递减区间);f(x)在R递增,符合题意;f(x)在R递减,不合题意;f(x)在(,0)递减,在(0,+)递增,不合题意;f(x)在R递增,符合题意;故答案为:14【答案】,. 【解析】15【答案】【解析】考点:平面图形的直观图16【答案】 【解析】解:0. = + +=,故答案为:【点评】本题考查数列的极限,考查学生的计算能力,比较基础17【答案】12 【解析】解:设两者都喜欢的人数为x人,则只喜爱篮球的有(15x)人,只喜爱乒乓球的有(10x)人,由此可得(15x)+(10x)+x+8=30,解得x=3,所以15x=12,即所求人数为12人,故答案为:1218【答案】(0,5) 【解析】解:y=ax的图象恒过定点(0,1),而f(x)=ax+4的图象是把y=ax的图象向上平移4个单位得到的,函数f(x)=ax+4的图象恒过定点P(0,5),故答案为:(0,5)【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题三、解答题19【答案】 【解析】解:(I)记甲、乙两位选手近8次的训练的平均成绩分别为、,方差分别为、,因为,所以甲、乙两位选手的平均水平相当,但甲的发挥更稳定,故应派甲参加(II)记事件C表示为“甲回答问题A成功”,事件D表示为“甲回答问题B成功”,则P(C)=,P(D)=,且事件C与事件D相互独立 记甲按AB顺序获得奖品价值为,则的可能取值为0,100,400P(=0)=P()=,P(=100)=P()=,P(=400)=P(CD)=即的分布列为:0100400P所以甲按AB顺序获得奖品价值的数学期望记甲按BA顺序获得奖品价值为,则的可能取值为0,300,400P(=0)=P()=,P(=300)=P()=,P(=400)=P(DC)=,即的分布列为:0300400P所以甲按BA顺序获得奖品价值的数学期望因为EE,所以甲应选择AB的答题顺序,获得的奖品价值更高【点评】本小题主要考查平均数、方差、古典概型、相互独立事件的概率、离散型随机变量分布列、数学期望等基础知识,考查数据处理能力、运算求解能力、应用意识,考查必然与或然思想、分类与整合思想20【答案】 【解析】解:(1)设切点由,知抛物线在Q点处的切线斜率为,故所求切线方程为即y=x0xx02因为点P(0,4)在切线上所以,解得x0=4所求切线方程为y=2x4(2)设A(x1,y1),C(x2,y2)由题意知,直线AC的斜率k存在,由对称性,不妨设k0因直线AC过焦点F(0,1),所以直线AC的方程为y=kx+1点A,C的坐标满足方程组,得x24kx4=0,由根与系数的关系知,|AC|=4(1+k2),因为ACBD,所以BD的斜率为,从而BD的方程为y=x+1同理可求得|BD|=4(1+),SABCD=|AC|BD|=8(2+k2+)32当k=1时,等号成立所以,四边形ABCD面积的最小值为32【点评】本题考查抛物线的方程和运用,考查直线和抛物线相切的条件,以及直线方程和抛物线的方程联立,运用韦达定理和弦长公式,考查基本不等式的运用,属于中档题21【答案】 【解析】(本小题满分12分)解:(1)bsinA=,由正弦定理可得:sinBsinA=sinAcosB,即得tanB=,B=(2)ABC的面积由已知及余弦定理,得又a2+c22ac,故ac4,当且仅当a=c时,等号成立因此ABC面积的最大值为22【答案】 【解析】解:(1)令f(x)的单增区间为(,2)和(0,+);单减区间为(2,0)(2)令x=0和x=2,f(x)0,2e2m023【答案】(1);(2)【解析】试题分析:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 渣油热加工工安全防护知识考核试卷含答案
- 建筑幕墙设计师安全知识能力考核试卷含答案
- 中央空调系统运行操作员安全宣传水平考核试卷含答案
- 苏州托普信息职业技术学院《中国古代文学(2)》2025-2026学年第一学期期末试卷
- 中国音乐学院《课程论文写作与学术规范》2025-2026学年第一学期期末试卷
- 半固态复合调味酱建设项目运营管理方案
- 安徽科技学院《青少年体育培训》2025-2026学年第一学期期末试卷
- 加大密度板项目可行性分析报告范文(总投资5000万元)
- 2025沈阳市浑南区总工会公开招聘工会社会工作者10人备考题库含答案详解(基础题)
- 年产xxx倒立式拉丝机项目可行性分析报告
- 建筑门窗合格证
- YY/T 0065-2016眼科仪器裂隙灯显微镜
- GB/T 37830-2019抗污易洁涂膜玻璃
- GB/T 15687-2008动植物油脂试样的制备
- 2023年陕西金融资产管理股份有限公司招聘笔试题库及答案解析
- 生活中的小创意课件
- 宁波市区普通住宅小区房屋共有部位和共用设施日常维修收费办法
- 论文投稿单位介绍信范文
- 海南仲裁委员会仲裁规则
- 附件7m16me17.8.8发动机管理系统维修手册chery-m16e4g16项目奇瑞标终版
- 纯化水系统再验证验证方案(定稿)
评论
0/150
提交评论