




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
信丰县高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若偶函数y=f(x),xR,满足f(x+2)=f(x),且x0,2时,f(x)=1x,则方程f(x)=log8|x|在10,10内的根的个数为( )A12B10C9D82 奇函数满足,且在上是单调递减,则的解集为( )ABC D3 圆上的点到直线的距离最大值是( )A B C D4 设函数,则使得的自变量的取值范围为( )A BC D5 设集合A=x|y=ln(x1),集合B=y|y=2x,则AB( )A(0,+)B(1,+)C(0,1)D(1,2)6 若函数f(x)的定义域为R,则“函数f(x)是奇函数”是“f(0)=0”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件7 棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )AB18CD8 满足集合M1,2,3,4,且M1,2,4=1,4的集合M的个数为( )A1B2C3D49 抛物线y=x2上的点到直线4x+3y8=0距离的最小值是( )ABCD310在抛物线y2=2px(p0)上,横坐标为4的点到焦点的距离为5,则该抛物线的准线方程为( )Ax=1Bx=Cx=1Dx=11已知集合A=y|y=x2+2x3,则有( )AABBBACA=BDAB=12某几何体的三视图如图所示,则该几何体的表面积为( )A8+2B8+8C12+4D16+4二、填空题13已知集合,则AB 14由曲线y=2x2,直线y=4x2,直线x=1围成的封闭图形的面积为15在中,为的中点,则的长为_.16函数图象上不同两点处的切线的斜率分别是,规定(为线段AB的长度)叫做曲线在点A与点B之间的“弯曲度”,给出以下命题:函数图象上两点A与B的横坐标分别为1和2,则;存在这样的函数,图象上任意两点之间的“弯曲度”为常数;设点A,B是抛物线上不同的两点,则;设曲线(e是自然对数的底数)上不同两点,若恒成立,则实数t的取值范围是.其中真命题的序号为_.(将所有真命题的序号都填上)17设全集U=R,集合M=x|2a1x4a,aR,N=x|1x2,若NM,则实数a的取值范围是18已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则=三、解答题19已知一个几何体的三视图如图所示()求此几何体的表面积;()在如图的正视图中,如果点A为所在线段中点,点B为顶点,求在几何体侧面上从点A到点B的最短路径的长20【常熟中学2018届高三10月阶段性抽测(一)】已知函数.(1)若函数是单调递减函数,求实数的取值范围;(2)若函数在区间上既有极大值又有极小值,求实数的取值范围.21已知集合A=x|1,xR,B=x|x22xm0()当m=3时,求;A(RB);()若AB=x|1x4,求实数m的值22【启东中学2018届高三上学期第一次月考(10月)】设,函数.(1)证明在上仅有一个零点;(2)若曲线在点处的切线与轴平行,且在点处的切线与直线平行,(O是坐标原点),证明:23(本小题满分10分)选修4-4:坐标系与参数方程:在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系已知直线的极坐标方程为,曲线的极坐标方程为(1)设为参数,若,求直线的参数方程;(2)已知直线与曲线交于,设,且,求实数的值24我市某校某数学老师这学期分别用m,n两种不同的教学方式试验高一甲、乙两个班(人数均为60人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样)现随机抽取甲、乙两班各20名的数学期末考试成绩,并作出茎叶图如图所示()依茎叶图判断哪个班的平均分高?()现从甲班所抽数学成绩不低于80分的同学中随机抽取两名同学,用表示抽到成绩为86分的人数,求的分布列和数学期望;()学校规定:成绩不低于85分的为优秀,作出分类变量成绩与教学方式的22列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”下面临界值表仅供参考:P(K2k)0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.828(参考公式:K2=,其中n=a+b+c+d)信丰县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:函数y=f(x)为偶函数,且满足f(x+2)=f(x),f(x+4)=f(x+2+2)=f(x+2)=f(x),偶函数y=f(x)为周期为4的函数,由x0,2时,f(x)=1x,可作出函数f(x)在10,10的图象,同时作出函数f(x)=log8|x|在10,10的图象,交点个数即为所求数形结合可得交点个为8,故选:D2 【答案】B【解析】试题分析:由,即整式的值与函数的值符号相反,当时,;当时,结合图象即得考点:1、函数的单调性;2、函数的奇偶性;3、不等式.3 【答案】【解析】试题分析:化简为标准形式,圆上的点到直线的距离的最大值为圆心到直线的距离加半径,半径为1,所以距离的最大值是,故选B.考点:直线与圆的位置关系 14 【答案】A【解析】考点:分段函数的应用.【方法点晴】本题主要考查了分段函数的应用,其中解答中涉及到不等式的求解,集合的交集和集合的并集运算,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据分段函数的分段条件,列出相应的不等式,通过求解每个不等式的解集,利用集合的运算是解答的关键.5 【答案】A【解析】解:集合A=x|y=ln(x1)=(1,+),集合B=y|y=2x=(0,+)则AB=(0,+)故选:A【点评】本题考查了集合的化简与运算问题,是基础题目6 【答案】A【解析】解:由奇函数的定义可知:若f(x)为奇函数,则任意x都有f(x)=f(x),取x=0,可得f(0)=0;而仅由f(0)=0不能推得f(x)为奇函数,比如f(x)=x2,显然满足f(0)=0,但f(x)为偶函数由充要条件的定义可得:“函数f(x)是奇函数”是“f(0)=0”的充分不必要条件故选:A7 【答案】D【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:故该几何体的表面积为:322+3()+=,故选:D8 【答案】B【解析】解:M1,2,4=1,4,1,4是M中的元素,2不是M中的元素M1,2,3,4,M=1,4或M=1,3,4故选:B9 【答案】A【解析】解:由,得3x24x+8=0=(4)2438=800所以直线4x+3y8=0与抛物线y=x2无交点设与直线4x+3y8=0平行的直线为4x+3y+m=0联立,得3x24xm=0由=(4)243(m)=16+12m=0,得m=所以与直线4x+3y8=0平行且与抛物线y=x2相切的直线方程为4x+3y=0所以抛物线y=x2上的一点到直线4x+3y8=0的距离的最小值是=故选:A【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题10【答案】C【解析】解:由题意可得抛物线y2=2px(p0)开口向右,焦点坐标(,0),准线方程x=,由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5,即4()=5,解之可得p=2故抛物线的准线方程为x=1故选:C【点评】本题考查抛物线的定义,关键是由抛物线的方程得出其焦点和准线,属基础题11【答案】B【解析】解:y=x2+2x3=(x+1)24,y4则A=y|y4x0,x+2=2(当x=,即x=1时取“=”),B=y|y2,BA故选:B【点评】本题考查子集与真子集,求解本题,关键是将两个集合进行化简,由子集的定义得出两个集合之间的关系,再对比选项得出正确选项12【答案】D【解析】解:根据三视图得出该几何体是一个斜四棱柱,AA1=2,AB=2,高为,根据三视图得出侧棱长度为=2,该几何体的表面积为2(2+22+22)=16,故选:D【点评】本题考查了空间几何体的三视图,运用求解表面积,关键是恢复几何体的直观图,属于中档题二、填空题13【答案】11,3【解析】试题分析:AB11,3考点:集合运算【方法点睛】1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解3.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍14【答案】 【解析】解:由方程组 解得,x=1,y=2故A(1,2)如图,故所求图形的面积为S=11(2x2)dx11(4x2)dx=(4)=故答案为:【点评】本题主要考查了定积分在求面积中的应用,以及定积分的计算,属于基础题15【答案】【解析】 考点:1、正弦定理及勾股定理;2诱导公式及直角三角形的性质.【方法点睛】本题主要考查正弦定理及勾股定理、诱导公式及直角三角形的性质,属于难题,高考三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正弦定理、余弦定理解三角形为主,难度中等,因此只要掌握基本的解题方法与技巧即可, 对于三角函数与解三角形相结合的题目,要注意通过正余弦定理以及面积公式实现边角互化,求出相关的边和角的大小,有时也要考虑特殊三角形的特殊性质(如正三角形,直角三角形等).16【答案】【解析】试题分析:错:对:如;对;错;,因为恒成立,故.故答案为.111考点:1、利用导数求曲线的切线斜率;2、两点间的距离公式、最值问题、不等式恒成立问题.【方法点晴】本题通过新定义“弯曲度”对多个命题真假的判断考查利用导数求曲线的切线斜率、两点间的距离公式、最值问题、不等式恒成立问题以及及数学化归思想,属于难题.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题.17【答案】,1 【解析】解:全集U=R,集合M=x|2a1x4a,aR,N=x|1x2,NM,2a11 且4a2,解得 2a,故实数a的取值范围是,1,故答案为,118【答案】5 【解析】解:求导得:f(x)=3ax2+2bx+c,结合图象可得x=1,2为导函数的零点,即f(1)=f(2)=0,故,解得故=5故答案为:5三、解答题19【答案】 【解析】解:()由三视图知:几何体是一个圆锥与一个圆柱的组合体,且圆锥与圆柱的底面半径为2,母线长分别为2、4,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和S圆锥侧=222=4;S圆柱侧=224=16;S圆柱底=22=4几何体的表面积S=20+4;()沿A点与B点所在母线剪开圆柱侧面,如图:则AB=2,以从A点到B点在侧面上的最短路径的长为220【答案】(1);(2).【解析】试题分析:(1)原问题等价于对恒成立,即对恒成立,结合均值不等式的结论可得;(2)由题意可知在上有两个相异实根,结合二次函数根的分布可得实数的取值范围是.试题解析:(2)函数在上既有极大值又有极小值,在上有两个相异实根,即在上有两个相异实根,记,则,得,即.21【答案】 【解析】解:(1)当m=3时,由x22x301x3,由11x5,AB=x|1x3;(2)若AB=x|1x4,A=(1,5),4是方程x22xm=0的一个根,m=8,此时B=(2,4),满足AB=(1,4)m=822【答案】(1)在上有且只有一个零点(2)证明见解析【解析】试题分析:试题解析:(1),在上为增函数,又,即,由零点存在性定理可知,在上为增函数,且,在上仅有一个零点。(2),设点,则,在点处的切线与轴平行,点处切线与直线平行,点处切线的斜率,又题目需证明,即,则只需证明,即。令,则,易知,当时,单调递减,当时,单调递增,即,得证。23【答案】【解析】【命题意图】本题主要考查抛物线极坐标方程、直线的极坐标方程与参数方程的互化、直线参数方程的几何意义的应用,意在考查逻辑思维能力、等价转化的能力、运算求解能力,以及方程思想、转化思想的应用24【答案】 【解析】【专题】综合题;概率与统计【分析】()依据茎叶图,确定甲、乙班数学成绩集中的范围,即可得到结论;()由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,=0,1,2,求出概率,可得的分布列和数学期望;()根据成绩不低于85分的为优秀,可得22列联表,计算K2,从而与临界值比较,即可得到结论【解答】解:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【高中语文】《林教头风雪山神庙》课件+统编版高一语文必修下册
- 森林府邸答题题目及答案
- 2023-2024学年河北省秦皇岛市卢龙县高二下学期7月期末考试数学试题(解析版)
- 行车安全心得体会
- 骨科医院宣传资料
- 食品化学幻灯片课件
- 作业现场定置管理制度
- 作文小学班级管理制度
- 供水公司制度管理制度
- 供水系统目标管理制度
- 红十字会资产管理制度
- DB31/T 1249-2020医疗废物卫生管理规范
- 四川省宜宾市翠屏区2025届数学七下期末综合测试试题含解析
- 乡镇合法性审查工作报告
- 2025届四川成都锦江区数学七下期末质量检测试题含解析
- 2025年发展对象考试题题库及答案
- 2025上半年山东文旅集团有限公司直属企业招聘88人笔试参考题库附带答案详解
- 《临床精准用血培训》课件
- 《外国文学》课件-说不尽的莎士比亚教学课件:《麦克白》
- 2025中国新型储能行业发展白皮书
- 油气管道输送试题及答案
评论
0/150
提交评论