缙云县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第1页
缙云县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第2页
缙云县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第3页
缙云县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第4页
缙云县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

缙云县高中2018-2019学年上学期高三数学期末模拟试卷含答案班级_ 座号_ 姓名_ 分数_一、选择题1 等比数列的前n项,前2n项,前3n项的和分别为A,B,C,则( )AB2=ACBA+C=2BCB(BA)=A(CA)DB(BA)=C(CA)2 设抛物线C:y2=2px(p0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( )Ay2=4x或y2=8xBy2=2x或y2=8xCy2=4x或y2=16xDy2=2x或y2=16x3 九章算术是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等问各得几何”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A钱B钱C钱D钱4 已知集合,则下列式子表示正确的有( );A1个 B2个 C3个 D4个5 i是虚数单位,计算i+i2+i3=( )A1B1CiDi6 设a=sin145,b=cos52,c=tan47,则a,b,c的大小关系是( )AabcBcbaCbacDacb7 若函数则函数的零点个数为( )A1 B2 C3 D48 已知角的终边上有一点P(1,3),则的值为( )ABCD49 已知函数f(x)=,则=( )ABC9D910若则的值为( ) A8 B C2 D 11某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m),则该工程需挖掘的总土方数为( )A560m3B540m3C520m3D500m312若圆上有且仅有三个点到直线是实数)的距离为,则( )A B C D二、填空题13抛物线y2=4x上一点M与该抛物线的焦点F的距离|MF|=4,则点M的横坐标x=14已知正方体ABCDA1B1C1D1的一个面A1B1C1D1在半径为的半球底面上,A、B、C、D四个顶点都在此半球面上,则正方体ABCDA1B1C1D1的体积为15= .16【常熟中学2018届高三10月阶段性抽测(一)】已知函数,若曲线(为自然对数的底数)上存在点使得,则实数的取值范围为_.17如图,在长方体ABCDA1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥ABB1D1D的体积为cm318如图是根据部分城市某年6月份的平均气温(单位:)数据得到的样本频率分布直方图,其中平均气温的范围是已知样本中平均气温不大于22.5的城市个数为11,则样本中平均气温不低于25.5的城市个数为三、解答题19求同时满足下列两个条件的所有复数z:z+是实数,且1z+6;z的实部和虚部都是整数20选修45:不等式选讲已知f(x)=|ax+1|(aR),不等式f(x)3的解集为x|2x1()求a的值;()若恒成立,求k的取值范围 21如图,矩形ABCD和梯形BEFC所在平面互相垂直,BECF,BCCF,EF=2,BE=3,CF=4()求证:EF平面DCE;()当AB的长为何值时,二面角AEFC的大小为6022已知椭圆:(),点在椭圆上,且椭圆的离心率为(1)求椭圆的方程;(2)过椭圆的右焦点的直线与椭圆交于,两点,为椭圆的右顶点,直线,分别交直线:于、两点,求证:23已知椭圆E的长轴的一个端点是抛物线y2=4x的焦点,离心率是(1)求椭圆E的标准方程;(2)已知动直线y=k(x+1)与椭圆E相交于A、B两点,且在x轴上存在点M,使得与k的取值无关,试求点M的坐标 24(1)求证:(2),若 缙云县高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1 【答案】C【解析】解:若公比q=1,则B,C成立;故排除A,D;若公比q1,则A=Sn=,B=S2n=,C=S3n=,B(BA)=()=(1qn)(1qn)(1+qn)A(CA)=()=(1qn)(1qn)(1+qn);故B(BA)=A(CA);故选:C【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力2 【答案】 C【解析】解:抛物线C方程为y2=2px(p0),焦点F坐标为(,0),可得|OF|=,以MF为直径的圆过点(0,2),设A(0,2),可得AFAM,RtAOF中,|AF|=,sinOAF=,根据抛物线的定义,得直线AO切以MF为直径的圆于A点,OAF=AMF,可得RtAMF中,sinAMF=,|MF|=5,|AF|=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x故选:C方法二:抛物线C方程为y2=2px(p0),焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5,4),代入抛物线方程得p210p+16=0,所以p=2或p=8所以抛物线C的方程为y2=4x或y2=16x故答案C【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题3 【答案】B【解析】解:依题意设甲、乙、丙、丁、戊所得钱分别为a2d,ad,a,a+d,a+2d,则由题意可知,a2d+ad=a+a+d+a+2d,即a=6d,又a2d+ad+a+a+d+a+2d=5a=5,a=1,则a2d=a2=故选:B4 【答案】C【解析】试题分析:,所以正确.故选C.考点:元素与集合关系,集合与集合关系5 【答案】A【解析】解:由复数性质知:i2=1故i+i2+i3=i+(1)+(i)=1故选A【点评】本题考查复数幂的运算,是基础题6 【答案】A【解析】解:a=sin145=sin35,b=cos52=sin38,c=tan47tan45=1,y=sinx在(0,90)单调递增,sin35sin38sin90=1,abc故选:A【点评】本题考查了三角函数的诱导公式的运用,正弦函数的单调性,难度不大,属于基础题7 【答案】D【解析】 考点:函数的零点【易错点睛】函数零点个数的判断方法:(1)直接求零点:令,如果能求出解,则有几个解就有几个零点(2)零点存在性定理法:要求函数在上是连续的曲线,且.还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点. 8 【答案】A【解析】解:点P(1,3)在终边上,tan=3,=故选:A9 【答案】A【解析】解:由题意可得f()=2,f(f()=f(2)=32=,故选A10【答案】B【解析】试题分析:,故选B。考点:分段函数。11【答案】A【解析】解:以顶部抛物线顶点为坐标原点,抛物线的对称轴为y轴建立直角坐标系,易得抛物线过点(3,1),其方程为y=,那么正(主)视图上部分抛物线与矩形围成的部分面积S1=2=4,下部分矩形面积S2=24,故挖掘的总土方数为V=(S1+S2)h=2820=560m3故选:A【点评】本题是对抛物线方程在实际生活中应用的考查,考查学生的计算能力,属于中档题12【答案】B【解析】试题分析:由圆,可得,所以圆心坐标为,半径为,要使得圆上有且仅有三个点到直线是实数)的距离为,则圆心到直线的距离等于,即,解得,故选B. 1考点:直线与圆的位置关系.【方法点晴】本题主要考查了直线与圆的位置关系,其中解答中涉及到圆的标准方程、圆心坐标和圆的半径、点到直线的距离公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化的思想方法,本题的解答中,把圆上有且仅有三个点到直线的距离为,转化为圆心到直线的距离等于是解答的关键. 二、填空题13【答案】3 【解析】解:抛物线y2=4x=2px,p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,|MF|=4=x+=4,x=3,故答案为:3【点评】活用抛物线的定义是解决抛物线问题最基本的方法抛物线上的点到焦点的距离,叫焦半径到焦点的距离常转化为到准线的距离求解14【答案】2 【解析】解:如图所示,连接A1C1,B1D1,相交于点O则点O为球心,OA=设正方体的边长为x,则A1O=x在RtOAA1中,由勾股定理可得: +x2=,解得x=正方体ABCDA1B1C1D1的体积V=2故答案为:215【答案】【解析】试题分析:原式=。考点:指、对数运算。16【答案】【解析】结合函数的解析式:可得:,令y=0,解得:x=0,当x0时,y0,当x0,yy0,则f(f(y0)=f(c)f(y0)=cy0,不满足f(f(y0)=y0同理假设f(y0)=c0,g(x)在(0,e)单调递增,当x=e时取最大值,最大值为,当x0时,a-,a的取值范围.点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号而解答本题(2)问时,关键是分离参数k,把所求问题转化为求函数的最小值问题(2)若可导函数f(x)在指定的区间D上单调递增(减),求参数范围问题,可转化为f(x)0(或f(x)0)恒成立问题,从而构建不等式,要注意“”是否可以取到17【答案】6 【解析】解:过A作AOBD于O,AO是棱锥的高,所以AO=,所以四棱锥ABB1D1D的体积为V=6故答案为:618【答案】9 【解析】解:平均气温低于22.5的频率,即最左边两个矩形面积之和为0.101+0.121=0.22,所以总城市数为110.22=50,平均气温不低于25.5的频率即为最右面矩形面积为0.181=0.18,所以平均气温不低于25.5的城市个数为500.18=9故答案为:9三、解答题19【答案】 【解析】解:设z+=t,则 z2tz+10=01t6,=t2400,解方程得 z=i又z的实部和虚部都是整数,t=2或t=6,故满足条件的复数共4个:z=13i 或 z=3i20【答案】 【解析】解:()由|ax+1|3得4ax2不等式f(x)3的解集为x|2x1当a0时,不合题意;当a0时,a=2;()记,h(x)=|h(x)|1恒成立,k1【点评】本题考查绝对值不等式的解法,考查恒成立问题,将绝对值符号化去是关键,属于中档题21【答案】 【解析】证明:()在BCE中,BCCF,BC=AD=,BE=3,EC=,在FCE中,CF2=EF2+CE2,EFCE由已知条件知,DC平面EFCB,DCEF,又DC与EC相交于C,EF平面DCE解:()方法一:过点B作BHEF交FE的延长线于H,连接AH由平面ABCD平面BEFC,平面ABCD平面BEFC=BC,ABBC,得AB平面BEFC,从而AHEF所以AHB为二面角AEFC的平面角在RtCEF中,因为EF=2,CF=4EC=CEF=90,由CEBH,得BHE=90,又在RtBHE中,BE=3,由二面角AEFC的平面角AHB=60,在RtAHB中,解得,所以当时,二面角AEFC的大小为60方法二:如图,以点C为坐标原点,以CB,CF和CD分别作为x轴,y轴和z轴,建立空间直角坐标系Cxyz设AB=a(a0),则C(0,0,0),A(,0,a),B(,0,0),E(,3,0),F(0,4,0)从而,设平面AEF的法向量为,由得,取x=1,则,即,不妨设平面EFCB的法向量为,由条件,得解得所以当时,二面角AEFC的大小为60【点评】本题考查的知识点是用空间向量求平面间的夹角,其中(I)的关键是熟练掌握线线垂直、线面垂直与面面垂直的之间的相互转化,(II)的关键是建立空间坐标系,将二面角问题,转化为向量的夹角问题22【答案】() ;()证明见解析【解析】试题分析: ()由题中条件要得两个等式,再由椭圆中的等式关系可得的值,求得椭圆的方程;()可设直线的方程,联立椭圆方程,由根与系数的关系得,得直线,直线,求得点 、坐标,利用得试题解析: (1)由题意得解得椭圆的方程为又,则,考点:椭圆的性质;向量垂直的充要条件23【答案】【解析】解:(1)由题意,椭圆的焦点在x轴上,且a=,1分c=ea=,故b=,4分所以,椭圆E的方程为,即x2+3y2=56分(2)将y=k(x+1)代入方程E:x2+3y2=5,得(3k2+1)x2+6k2x+3k25=0;7分设A(x1,y1),B(x2,y2),M(m,0),则x1+x2=,x1x2=;8分=(x1m,y1)=(x1m,k(x1+1),=(x2m,y2)=(x2m,k(x2+1);=(k2+1)x1x2+(k2m)(x1+x2)+k2+m2=m2+2m,要使上式与k无关,则有6m+14=0,解得m=;存在点M(,0)满足题意13分【点评】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论