




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷陇县二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 下列函数在其定义域内既是奇函数又是增函数的是()A B C D2 不等式x(x1)2的解集是( )Ax|2x1Bx|1x2Cx|x1或x2Dx|x2或x13 等差数列an中,已知前15项的和S15=45,则a8等于( )AB6CD34 已知2a=3b=m,ab0且a,ab,b成等差数列,则m=( )ABCD65 如图RtOAB是一平面图形的直观图,斜边OB=2,则这个平面图形的面积是( )AB1CD6 设ABC的三边长分别为a、b、c,ABC的面积为S,内切圆半径为r,则,类比这个结论可知:四面体SABC的四个面的面积分别为S1、S2、S3、S4,内切球半径为r,四面体SABC的体积为V,则r=( )ABCD7 在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )ABCD8 若命题“p或q”为真,“非p”为真,则( )Ap真q真Bp假q真Cp真q假Dp假q假9 若命题“pq”为假,且“q”为假,则( )A“pq”为假Bp假Cp真D不能判断q的真假10已知定义在R上的偶函数f(x)在0,+)上是增函数,且f(ax+1)f(x2)对任意都成立,则实数a的取值范围为( )A2,0B3,1C5,1D2,1)11如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为( ) A4 B8 C12 D20【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力12已知表示数列的前项和,若对任意的满足,且,则( )ABCD二、填空题13(sinx+1)dx的值为14(2)7的展开式中,x2的系数是15函数y=lgx的定义域为16如图,长方体ABCDA1B1C1D1中,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,则异面直线A1E与GF所成的角的余弦值是 17设A=x|x1或x3,B=x|axa+1,AB=B,则a的取值范围是18数据2,1,0,1,2的方差是三、解答题19已知函数f(x)=2x,且f(2)=(1)求实数a的值;(2)判断该函数的奇偶性;(3)判断函数f(x)在(1,+)上的单调性,并证明20设函数f(x)=1+(1+a)xx2x3,其中a0()讨论f(x)在其定义域上的单调性;()当x时,求f(x)取得最大值和最小值时的x的值21已知椭圆:的长轴长为,为坐标原点()求椭圆C的方程和离心率;()设动直线与y轴相交于点,点关于直线的对称点在椭圆上,求的最小值22如图,在长方体ABCDA1B1C1D1中,AB=2,AD=1,A1A=1,(1)求证:直线BC1平面D1AC;(2)求直线BC1到平面D1AC的距离23某工厂修建一个长方体形无盖蓄水池,其容积为4800立方米,深度为3米池底每平方米的造价为150元,池壁每平方米的造价为120元设池底长方形长为x米()求底面积并用含x的表达式表示池壁面积;()怎样设计水池能使总造价最低?最低造价是多少?24若函数f(x)=sinxcosx+sin2x(0)的图象与直线y=m(m为常数)相切,并且切点的横坐标依次构成公差为的等差数列()求及m的值;()求函数y=f(x)在x0,2上所有零点的和陇县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】【知识点】函数的单调性与最值函数的奇偶性【试题解析】若函数是奇函数,则故排除A、D;对C:在(-和(上单调递增,但在定义域上不单调,故C错;故答案为:B2 【答案】B【解析】解:x(x1)2,x2x20,即(x2)(x+1)0,1x2,即不等式的解集为x|1x2故选:B3 【答案】D【解析】解:由等差数列的性质可得:S15=15a8=45,则a8=3故选:D4 【答案】C【解析】解:2a=3b=m,a=log2m,b=log3m,a,ab,b成等差数列,2ab=a+b,ab0,+=2,=logm2, =logm3,logm2+logm3=logm6=2,解得m=故选 C【点评】本题考查了指数与对数的运算的应用及等差数列的性质应用5 【答案】D【解析】解:RtOAB是一平面图形的直观图,斜边OB=2,直角三角形的直角边长是,直角三角形的面积是,原平面图形的面积是12=2故选D6 【答案】 C【解析】解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和则四面体的体积为 R=故选C【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去一般步骤:找出两类事物之间的相似性或者一致性用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想)7 【答案】C【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,所以共有46=24个,而在8个点中选3个点的有C83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题8 【答案】B【解析】解:若命题“p或q”为真,则p真或q真,若“非p”为真,则p为假,p假q真,故选:B【点评】本题考查了复合命题的真假的判断,是一道基础题9 【答案】B【解析】解:命题“pq”为假,且“q”为假,q为真,p为假;则pq为真,故选B【点评】本题考查了复合命题的真假性的判断,属于基础题10【答案】A【解析】解:偶函数f(x)在0,+)上是增函数,则f(x)在(,0)上是减函数,则f(x2)在区间,1上的最小值为f(1)=f(1)若f(ax+1)f(x2)对任意都成立,当时,1ax+11,即2ax0恒成立则2a0故选A11【答案】C【解析】由三视图可知该几何体是四棱锥,且底面为长,宽的矩形,高为3,所以此四棱锥体积为,故选C.12【答案】C【解析】令得,所以,即,所以是以1为公差的等差数列,首项为,所以,故选C答案:C 二、填空题13【答案】2 【解析】解:所求的值为(xcosx)|11=(1cos1)(1cos(1)=2cos1+cos1=2故答案为:214【答案】280 解:(2)7的展开式的通项为=由,得r=3x2的系数是故答案为:28015【答案】x|x0 【解析】解:对数函数y=lgx的定义域为:x|x0故答案为:x|x0【点评】本题考查基本函数的定义域的求法16【答案】0【解析】【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线A1E与GF所成的角的余弦值【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,A1(1,0,2),E(0,0,1),G(0,2,1),F(1,1,0),=(1,0,1),=(1,1,1),=1+0+1=0,A1EGF,异面直线A1E与GF所成的角的余弦值为0故答案为:017【答案】a0或a3 【解析】解:A=x|x1或x3,B=x|axa+1,且AB=B,BA,则有a+11或a3,解得:a0或a3,故答案为:a0或a318【答案】2 【解析】解:数据2,1,0,1,2,=,S2= (20)2+(10)2+(00)2+(10)2+(20)2=2,故答案为2;【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,xn的平均数,是一道基础题;三、解答题19【答案】 【解析】解:(1)f(x)=2x,且f(2)=,4=,a=1;(2分)(2)由(1)得函数,定义域为x|x0关于原点对称(3分)=,函数为奇函数(6分)(3)函数f(x)在(1,+)上是增函数,(7分)任取x1,x2(1,+),不妨设x1x2,则=(10分)x1,x2(1,+)且x1x2x2x10,2x1x210,x1x20f(x2)f(x1)0,即f(x2)f(x1),f(x)在(1,+)上是增函数 (12分)【点评】本题考查函数的单调性与奇偶性,考查学生分析解决问题的能力,属于中档题20【答案】 【解析】解:()f(x)的定义域为(,+),f(x)=1+a2x3x2,由f(x)=0,得x1=,x2=,x1x2,由f(x)0得x,x;由f(x)0得x;故f(x)在(,)和(,+)单调递减,在(,)上单调递增;()a0,x10,x20,x,当时,即a4当a4时,x21,由()知,f(x)在上单调递增,f(x)在x=0和x=1处分别取得最小值和最大值当0a4时,x21,由()知,f(x)在单调递增,在上单调递减,因此f(x)在x=x2=处取得最大值,又f(0)=1,f(1)=a,当0a1时,f(x)在x=1处取得最小值;当a=1时,f(x)在x=0和x=1处取得最小值;当1a4时,f(x)在x=0处取得最小值21【答案】【解析】【知识点】圆锥曲线综合椭圆【试题解析】()因为椭圆C:,所以,故,解得,所以椭圆的方程为因为,所以离心率()由题意,直线的斜率存在,设点,则线段的中点的坐标为,且直线的斜率,由点关于直线的对称点为,得直线,故直线的斜率为,且过点,所以直线的方程为:,令,得,则,由,得,化简,得所以当且仅当,即时等号成立所以的最小值为22【答案】 【解析】解:(1)因为ABCDA1B1C1D1为长方体,故ABC1D1,AB=C1D1,故ABC1D1为平行四边形,故BC1AD1,显然B不在平面D1AC上,故 直线BC1平行于平面DA1C;(2)直线BC1到平面D1AC的距离即为点B到平面D1AC的距离(设为h)以ABC为底面的三棱锥D1ABC的体积V,可得而AD1C中,故所以以AD1C为底面的三棱锥BAD1C的体积,即直线BC1到平面D1AC的距离为【点评】本题考查了线面平行的判定定理,考查线面的距离以及数形结合思想,是一道中档题23【答案】 【解析】解:()设水池的底面积为S1,池壁面积为S2,则有(平方米),可知,池底长方形宽为米,则()设总造价为y,则当且仅当,即x=40时取等号,所以x=40时,总造价最低为297600元答:x=40时,总造价最低为297600元24【答案】 【解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年石化化工行业6月看好钾肥、阿洛酮糖、制冷剂、农药、生物柴油的投资方向
- 制造业供应链数字化协同管理在2025年的绿色制造与环保技术应用
- 2025年能源行业报告:碳捕获与封存技术应用前景预测与解析
- 工业互联网平台NFV在智能城市智慧旅游中的应用实践报告
- 直播电商行业主播个人品牌价值评估与市场分析报告
- 2025年音乐流媒体平台版权运营与数字音乐版权市场发展趋势与挑战分析报告
- 城市生活垃圾分类处理公众参与与社区环保活动策划研究报告
- 医疗美容行业消费者心理与服务质量改进策略深度报告
- 评课万能评课稿集合12篇
- 施工成本控制管理制度
- 中华文明的起源与早期国家课件
- Unit 8 I come from China. (教学设计)-2023-2024学年湘少版(三起)英语四年级下册
- 2024年湖南中考道德与法治试卷真题答案解析(精校打印)
- 《食品经营许可证》申请书(范本)
- 2024年浙江高考英语考纲词汇表
- 广东省揭阳市2024年小升初语文真题试卷及答案
- 化工过程安全管理导则培训
- 古代文论-杨宁老师-笔记
- 2024年西藏事业单位真题
- 水利水电工程单元工程施工质量验收评定表及填表说明
- 茶楼股东合作协议范本
评论
0/150
提交评论