霍邱县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
霍邱县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
霍邱县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
霍邱县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
霍邱县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

霍邱县高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设a是函数x的零点,若x0a,则f(x0)的值满足( )Af(x0)=0Bf(x0)0Cf(x0)0Df(x0)的符号不确定2 若a0,b0,a+b=1,则y=+的最小值是( )A2B3C4D53 设集合A=x|xa,B=x|x3,则“a3”是“AB”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件4 已知函数f(x)=,则=( )ABC9D95 一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P,直线PF1(F1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为( )ABCD6 以下四个命题中,真命题的是( ) A B“对任意的,”的否定是“存在, C,函数都不是偶函数 D已知,表示两条不同的直线,表示不同的平面,并且,则“”是 “”的必要不充分条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力7 经过点且在两轴上截距相等的直线是( )A BC或 D或8 已知集合A=0,1,2,则集合B=xy|xA,yA的元素个数为( )A4B5C6D99 已知为抛物线上两个不同的点,为抛物线的焦点若线段的中点的纵坐标为,则直线的方程为( ) A B C D10已知平面向量=(1,2),=(2,m),且,则=( )A(5,10)B(4,8)C(3,6)D(2,4)11设公差不为零的等差数列的前项和为,若,则( ) A B C7 D14【命题意图】本题考查等差数列的通项公式及其前项和,意在考查运算求解能力.12已知变量满足约束条件,则的取值范围是( )A B C D二、填空题13图中的三个直角三角形是一个体积为的几何体的三视图,则_.14函数的定义域是,则函数的定义域是_.11115等比数列an的前n项和Snk1k22n(k1,k2为常数),且a2,a3,a42成等差数列,则an_16在ABC中,则_17命题“xR,2x23ax+90”为假命题,则实数a的取值范围为 18已知一个动圆与圆C:(x+4)2+y2=100相内切,且过点A(4,0),则动圆圆心的轨迹方程三、解答题19(本小题满分12分)设椭圆的离心率,圆与直线相切,为坐标原点.(1)求椭圆的方程;(2)过点任作一直线交椭圆于两点,记,若在线段上取一点,使得,试判断当直线运动时,点是否在某一定直一上运动?若是,请求出该定直线的方程;若不是,请说明理由.20已知p:,q:x2(a2+1)x+a20,若p是q的必要不充分条件,求实数a的取值范围21已知正项等差an,lga1,lga2,lga4成等差数列,又bn=(1)求证bn为等比数列(2)若bn前3项的和等于,求an的首项a1和公差d22某运动员射击一次所得环数X的分布如下:X0678910P00.20.30.30.2现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为(I)求该运动员两次都命中7环的概率;()求的数学期望E23(1)直线l的方程为(a+1)x+y+2a=0(aR)若l在两坐标轴上的截距相等,求a的值;(2)已知A(2,4),B(4,0),且AB是圆C的直径,求圆C的标准方程24如图,椭圆C1:的离心率为,x轴被曲线C2:y=x2b截得的线段长等于椭圆C1的短轴长C2与y轴的交点为M,过点M的两条互相垂直的直线l1,l2分别交抛物线于A、B两点,交椭圆于D、E两点,()求C1、C2的方程;()记MAB,MDE的面积分别为S1、S2,若,求直线AB的方程霍邱县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:作出y=2x和y=logx的函数图象,如图:由图象可知当x0a时,2logx0,f(x0)=2logx00故选:C2 【答案】C【解析】解:a0,b0,a+b=1,y=+=(a+b)=2+=4,当且仅当a=b=时取等号y=+的最小值是4故选:C【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题3 【答案】A【解析】解:若AB,则a3,则“a3”是“AB”的充分不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,根据集合关系是解决本题的关键4 【答案】A【解析】解:由题意可得f()=2,f(f()=f(2)=32=,故选A5 【答案】D【解析】解:设F2为椭圆的右焦点由题意可得:圆与椭圆交于P,并且直线PF1(F1为椭圆的左焦点)是该圆的切线,所以点P是切点,所以PF2=c并且PF1PF2又因为F1F2=2c,所以PF1F2=30,所以根据椭圆的定义可得|PF1|+|PF2|=2a,所以|PF2|=2ac所以2ac=,所以e=故选D【点评】解决此类问题的关键是熟练掌握直线与圆的相切问题,以即椭圆的定义6 【答案】D7 【答案】D【解析】考点:直线的方程.8 【答案】B【解析】解:x=0时,y=0,1,2,xy=0,1,2;x=1时,y=0,1,2,xy=1,0,1;x=2时,y=0,1,2,xy=2,1,0;B=0,1,2,1,2,共5个元素故选:B9 【答案】D 【解析】解析:本题考查抛物线的焦半径公式的应用与“中点弦”问题的解法设,那么,线段的中点坐标为.由,两式相减得,而,直线的方程为,即,选D10【答案】B【解析】解:排除法:横坐标为2+(6)=4,故选B11【答案】C.【解析】根据等差数列的性质,化简得,故选C.12【答案】A【解析】试题分析:作出可行域,如图内部(含边界),表示点与原点连线的斜率,易得,所以故选A考点:简单的线性规划的非线性应用二、填空题13【答案】【解析】试题分析:由三视图可知该几何体为三棱锥,其中侧棱底面,且为直角三角形,且,所以三棱锥的体积为,解得.考点:几何体的三视图与体积.14【答案】【解析】考点:函数的定义域.15【答案】【解析】当n1时,a1S1k12k2,当n2时,anSnSn1(k1k22n)(k1k22n1)k22n1,k12k2k220,即k1k20,又a2,a3,a42成等差数列2a3a2a42,即8k22k28k22.由联立得k11,k21,an2n1.答案:2n116【答案】2【解析】【知识点】余弦定理同角三角函数的基本关系式【试题解析】因为所以又因为解得:再由余弦定理得:故答案为:217【答案】2a2【解析】解:原命题的否定为“xR,2x23ax+90”,且为真命题,则开口向上的二次函数值要想大于等于0恒成立,只需=9a24290,解得:2a2故答案为:2a2【点评】存在性问题在解决问题时一般不好掌握,若考虑不周全、或稍有不慎就会出错所以,可以采用数学上正难则反的思想,去从它的反面即否命题去判定注意“恒成立”条件的使用18【答案】+=1 【解析】解:设动圆圆心为B,半径为r,圆B与圆C的切点为D,圆C:(x+4)2+y2=100的圆心为C(4,0),半径R=10,由动圆B与圆C相内切,可得|CB|=Rr=10|BD|,圆B经过点A(4,0),|BD|=|BA|,得|CB|=10|BA|,可得|BA|+|BC|=10,|AC|=810,点B的轨迹是以A、C为焦点的椭圆,设方程为(ab0),可得2a=10,c=4,a=5,b2=a2c2=9,得该椭圆的方程为+=1故答案为: +=1三、解答题19【答案】(1);(2)点在定直线上.【解析】试题解析:(1)由,又,解得,所以椭圆的方程为.设点的坐标为,则由,得,解得又,从而,故点在定直线上.考点:1.椭圆的标准方程与几何性质;2.直线与椭圆的位置关系.20【答案】 【解析】解:由p: 1x2,方程x2(a2+1)x+a2=0的两个根为x=1或x=a2,若|a|1,则q:1xa2,此时应满足a22,解得1|a|,当|a|=1,q:x,满足条件,当|a|1,则q:a2x1,此时应满足|a|1,综上【点评】本题主要考查复合命题的应用,以及充分条件和必要条件的应用,结合一元二次不等式的解法是解决本题的关键21【答案】 【解析】(1)证明:设an中首项为a1,公差为dlga1,lga2,lga4成等差数列,2lga2=lga1+lga4,a22=a1a4即(a1+d)2=a1(a1+3d),d=0或d=a1当d=0时,an=a1,bn=, =1,bn为等比数列;当d=a1时,an=na1,bn=, =,bn为等比数列综上可知bn为等比数列(2)解:当d=0时,S3=,所以a1=;当d=a1时,S3=,故a1=3=d【点评】本题主要考查等差数列与等比数列的综合以及分类讨论思想的应用,涉及数列的公式多,复杂多样,故应多下点功夫记忆22【答案】 【解析】解:(1)设A=“该运动员两次都命中7环”,则P(A)=0.20.2=0.04(2)依题意在可能取值为:7、8、9、10且P(=7)=0.04,P(=8)=20.20.3+0.32=0.21,P(=9)=20.20.3+20.30.30.32=0.39,P(=10)=20.20.2+20.30.2+20.30.2+0.22=0.36,的分布列为:78910P0.040.210.390.36的期望为E=70.04+80.21+90.39+100.36=9.07【点评】本题考查概率的求法,考查离散型随机变量的数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用23【答案】 【解析】解:(1)当a=1时,直线化为y+3=0,不符合条件,应舍去;当a1时,分别令x=0,y=0,解得与坐标轴的交点(0,a2),(,0)直线l在两坐标轴上的截距相等,a2=,解得a=2或a=0;(2)A(2,4),B(4,0),线段AB的中点C坐标为(1,2)又|AB|=,所求圆的半径r=|AB|=因此,以线段AB为直径的圆C的标准方程为(x1)2+(y2)2=1324【答案】 【解析】解:()椭圆C1:的离心率为,a2=2b2,令x2b=0可得x=,x轴被曲线C2:y=x2b截得的线段长等于椭圆C1的短轴长,2=2b,b=1,C1、C2的方程分别为,y=x21;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论