安图县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
安图县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
安图县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
安图县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
安图县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安图县高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设集合A=x|x2|2,xR,B=y|y=x2,1x2,则R(AB)等于( )ARBx|xR,x0C0D2 设集合S=|x|x1或x5,T=x|axa+8,且ST=R,则实数a的取值范围是( )A3a1B3a1Ca3或a1Da3或a13 (2014新课标I)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在0,的图象大致为( )ABCD4 幂函数y=f(x)的图象经过点(2,),则满足f(x)=27的x的值是( )ABC3D35 已知函数f(x)=2ax33x2+1,若 f(x)存在唯一的零点x0,且x00,则a的取值范围是( )A(1,+)B(0,1)C(1,0)D(,1)6 已知,则fff(2)的值为( )A0B2C4D87 在平行四边形ABCD中,AC为一条对角线, =(2,4),=(1,3),则等于( )A(2,4)B(3,5)C(3,5)D(2,4)8 若复数z=2i ( i为虚数单位),则=( )A4+2iB20+10iC42iD9 如图,在长方形ABCD中,AB=,BC=1,E为线段DC上一动点,现将AED沿AE折起,使点D在面ABC上的射影K在直线AE上,当E从D运动到C,则K所形成轨迹的长度为( )ABCD10袋中装有红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,则恰有两个球同色的概率为( )ABCD11将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( )A1372B2024C3136D449512已知数列的各项均为正数,若数列的前项和为5,则( )A B C D二、填空题13计算:51=14命题“若a0,b0,则ab0”的逆否命题是(填“真命题”或“假命题”)15 设函数,有下列四个命题:若对任意,关于的不等式恒成立,则;若存在,使得不等式成立,则;若对任意及任意,不等式恒成立,则;若对任意,存在,使得不等式成立,则其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.16直线ax+by=1与圆x2+y2=1相交于A,B两点(其中a,b是实数),且AOB是直角三角形(O是坐标原点),则点P(a,b)与点(1,0)之间距离的最小值为17方程(x+y1)=0所表示的曲线是18已知函数的一条对称轴方程为,则函数的最大值为_【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想三、解答题19如图,已知AC,BD为圆O的任意两条直径,直线AE,CF是圆O所在平面的两条垂线,且线段AE=CF=,AC=2()证明ADBE;()求多面体EFABCD体积的最大值20【常熟中学2018届高三10月阶段性抽测(一)】已知函数有一个零点为4,且满足.(1)求实数和的值;(2)试问:是否存在这样的定值,使得当变化时,曲线在点处的切线互相平行?若存在,求出的值;若不存在,请说明理由;(3)讨论函数在上的零点个数.21已知斜率为1的直线l经过抛物线y2=2px(p0)的焦点F,且与抛物线相交于A,B两点,|AB|=4(I)求p的值;(II)若经过点D(2,1),斜率为k的直线m与抛物线有两个不同的公共点,求k的取值范围22在锐角三角形ABC中,内角A,B,C所对的边分别为a,b,c,且2csinA=a(1)求角C的大小;(2)若c=2,a2+b2=6,求ABC的面积23全集U=R,若集合A=x|3x10,B=x|2x7,(1)求AB,(UA)(UB); (2)若集合C=x|xa,AC,求a的取值范围24如图,直三棱柱ABCA1B1C1中,D、E分别是AB、BB1的中点,AB=2,(1)证明:BC1平面A1CD;(2)求异面直线BC1和A1D所成角的大小;(3)求三棱锥A1DEC的体积安图县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:A=0,4,B=4,0,所以AB=0,R(AB)=x|xR,x0,故选B2 【答案】A【解析】解:S=|x|x1或x5,T=x|axa+8,且ST=R,解得:3a1故选:A3 【答案】 C【解析】解:在直角三角形OMP中,OP=1,POM=x,则OM=|cosx|,点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选C【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用4 【答案】A【解析】解:设幂函数为y=x,因为图象过点(2,),所以有=(2),解得:=3所以幂函数解析式为y=x3,由f(x)=27,得:x3=27,所以x=故选A5 【答案】D【解析】解:若a=0,则函数f(x)=3x2+1,有两个零点,不满足条件若a0,函数的f(x)的导数f(x)=6ax26x=6ax(x),若 f(x)存在唯一的零点x0,且x00,若a0,由f(x)0得x或x0,此时函数单调递增,由f(x)0得0x,此时函数单调递减,故函数在x=0处取得极大值f(0)=10,在x=处取得极小值f(),若x00,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件若a0,由f(x)0得x0,此时函数递增,由f(x)0得x或x0,此时函数单调递减,即函数在x=0处取得极大值f(0)=10,在x=处取得极小值f(),若存在唯一的零点x0,且x00,则f()0,即2a()33()2+10,()21,即10,解得a1,故选:D【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键注意分类讨论6 【答案】C【解析】解:20f(2)=0f(f(2)=f(0)0=0f(0)=2即f(f(2)=f(0)=220f(2)=22=4即ff(2)=f(f(0)=f(2)=4故选C7 【答案】C【解析】解:,=(3,5)故选:C【点评】本题考查向量的基本运算,向量的坐标求法,考查计算能力8 【答案】A【解析】解:z=2i,=,=10=4+2i,故选:A【点评】本题考查复数的运算,注意解题方法的积累,属于基础题9 【答案】 D【解析】解:由题意,将AED沿AE折起,使平面AED平面ABC,在平面AED内过点D作DKAE,K为垂足,由翻折的特征知,连接DK,则DKA=90,故K点的轨迹是以AD为直径的圆上一弧,根据长方形知圆半径是,如图当E与C重合时,AK=,取O为AD的中点,得到OAK是正三角形故K0A=,K0D=,其所对的弧长为=,故选:D10【答案】B【解析】解:从红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,共有C63=20种,其中恰有两个球同色C31C41=12种,故恰有两个球同色的概率为P=,故选:B【点评】本题考查了排列组合和古典概率的问题,关键是求出基本事件和满足条件的基本事件的种数,属于基础题11【答案】 C【解析】【专题】排列组合【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上任选正方形的三边,使三个顶点分别在其上,有4种方法,再在选出的三条边上各选一点,有73种方法这类三角形共有473=1372个另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点这类三角形共有42121=1764个综上可知,可得不同三角形的个数为1372+1764=3136故选:C【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题12【答案】C 【解析】解析:本题考查等差数列的定义通项公式与“裂项法”求数列的前项和由得,是等差数列,公差为,首项为,由得,数列的前项和为,选C二、填空题13【答案】9 【解析】解:51=(5)(9)=9,51=9,故答案为:914【答案】真命题 【解析】解:若a0,b0,则ab0成立,即原命题为真命题,则命题的逆否命题也为真命题,故答案为:真命题【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键15【答案】【解析】16【答案】 【解析】解:AOB是直角三角形(O是坐标原点),圆心到直线ax+by=1的距离d=,即d=,整理得a2+2b2=2,则点P(a,b)与点Q(1,0)之间距离d=,点P(a,b)与点(1,0)之间距离的最小值为故答案为:【点评】本题主要考查直线和圆的位置公式的应用以及两点间的距离公式,考查学生的计算能力17【答案】两条射线和一个圆 【解析】解:由题意可得x2+y240,表示的区域是以原点为圆心的圆的外部以及圆上的部分由方程(x+y1)=0,可得x+y1=0,或 x2+y2=4,故原方程表示一条直线在圆外的地方和一个圆,即两条射线和一个圆,故答案为:两条射线和一个圆【点评】本题主要考查直线和圆的方程的特征,属于基础题18【答案】1【解析】三、解答题19【答案】 【解析】()证明:BD为圆O的直径,ABAD,直线AE是圆O所在平面的垂线,ADAE,ABAE=A,AD平面ABE,ADBE;()解:多面体EFABCD体积V=VBAEFC+VDAEFC=2VBAEFC直线AE,CF是圆O所在平面的两条垂线,AECF,AEAC,AFACAE=CF=,AEFC为矩形,AC=2,SAEFC=2,作BMAC交AC于点M,则BM平面AEFC,V=2VBAEFC=2=多面体EFABCD体积的最大值为【点评】本题考查线面垂直,线线垂直,考查体积的计算,考查学生分析解决问题的能力,难度中等20【答案】(1);(2)答案见解析;(3)当或时,在有两个零点;当时,在有一个零点.【解析】试题分析:(1)由题意得到关于实数b,c的方程组,求解方程组可得; (3)函数的导函数,结合导函数的性质可得当或时,在有两个零点;当时,在有一个零点.试题解析:(1)由题意,解得;(2)由(1)可知,;假设存在满足题意,则是一个与无关的定值,即是一个与无关的定值,则,即,平行直线的斜率为;(3),其中,设两根为和,考察在上的单调性,如下表1当时,而,在和上各有一个零点,即在有两个零点;2当时,而,仅在上有一个零点,即在有一个零点;3当时,且,当时,则在和上各有一个零点,即在有两个零点;当时,则仅在上有一个零点,即在有一个零点;综上:当或时,在有两个零点;当时,在有一个零点.点睛:在解决类似的问题时,首先要注意区分函数最值与极值的区别求解函数的最值时,要先求函数yf(x)在a,b内所有使f(x)0的点,再计算函数yf(x)在区间内所有使f(x)0的点和区间端点处的函数值,最后比较即得21【答案】 【解析】解:(I)由题意可知,抛物线y2=2px(p0)的焦点坐标为,准线方程为所以,直线l的方程为由消y并整理,得设A(x1,y1),B(x2,y2)则x1+x2=3p,又|AB|=|AF|+|BF|=x1+x2+p=4,所以,3p+p=4,所以p=1(II)由(I)可知,抛物线的方程为y2=2x由题意,直线m的方程为y=kx+(2k1)由方程组(1)可得ky22y+4k2=0(2)当k=0时,由方程(2),得y=1把y=1代入y2=2x,得这时直线m与抛物线只有一个公共点当k0时,方程(2)得判别式为=44k(4k2)由0,即44k(4k2)0,亦即4k22k10解得于是,当且k0时,方程(2)有两个不同的实根,从而方程组(1)有两组不同的解,这时,直线m与抛物线有两个不同的公共点,因此,所求m的取值范围是【点评】本题考查抛物线的方程与性质,考查直线与抛物线的位置关系,考查学生分析解决问题的能力,属于中档题22【答案】 【解析】(本小题满分10分)解:(1),2分在锐角ABC中,3分故sinA0,5分(2),6分,即ab=2,8分10分【点评】本题主要考查了正弦定理,特殊角的三角函数值,余弦定理,三角形的面积公式在解三角形中的应用,考查了转化思想,属于基础题23【答案】 【解析】解:(1)A=x|3x10,B=x|2x7,AB=3,7;AB=(2,10);(CUA)(CUB)=(,3)10,+);(2)集合C=x|xa,若AC,则a3,即a的取值范围是a|a324【答案】 【解析】(1)证明:连接AC1与A1C相交于点F,连接DF,由矩形ACC1A1可得点F是AC1的中点,又D是AB的中点,DFBC1,BC1平面A1CD,DF平面A1CD,BC1平面A1CD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论