




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
青阳县三中2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 =( )A2B4CD22 已知双曲线(a0,b0)的右焦点F,直线x=与其渐近线交于A,B两点,且ABF为钝角三角形,则双曲线离心率的取值范围是( )ABCD3 一个骰子由六个数字组成,请你根据图中三种状态所显示的数字,推出“”处的数字是( )A6 B3 C1 D24 下列各组表示同一函数的是( )Ay=与y=()2By=lgx2与y=2lgxCy=1+与y=1+Dy=x21(xR)与y=x21(xN)5 已知角的终边经过点,则的值为( )A B C. D06 已知实数满足不等式组,若目标函数取得最大值时有唯一的最优解,则实数的取值范围是( )A B C D【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.7 在ABC中,a=1,b=4,C=60,则边长c=( )A13BCD218 P是双曲线=1(a0,b0)右支上一点,F1、F2分别是左、右焦点,且焦距为2c,则PF1F2的内切圆圆心的横坐标为( )AaBbCcDa+bc9 已知函数f(x)=,则的值为( )ABC2D310对一切实数x,不等式x2+a|x|+10恒成立,则实数a的取值范围是( )A(,2)BD上是减函数,那么b+c( )A有最大值B有最大值C有最小值D有最小值11底面为矩形的四棱锥PABCD的顶点都在球O的表面上,且O在底面ABCD内,PO平面ABCD,当四棱锥PABCD的体积的最大值为18时,球O的表面积为( )A36 B48C60 D7212奇函数满足,且在上是单调递减,则的解集为( )ABC D二、填空题13某公司租赁甲、乙两种设备生产两类产品,甲种设备每天能生产类产品5件和类产品10件,乙种设备每天能生产类产品6件和类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产类产品50件,类产品140件,所需租赁费最少为_元.14如图,在长方体ABCDA1B1C1D1中,AB=5,BC=4,AA1=3,沿该长方体对角面ABC1D1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为15设函数,若用表示不超过实数m的最大整数,则函数的值域为16直线l:(t为参数)与圆C:(为参数)相交所得的弦长的取值范围是17已知线性回归方程=9,则b=18若函数f(x),g(x)满足:x(0,+),均有f(x)x,g(x)x成立,则称“f(x)与g(x)关于y=x分离”已知函数f(x)=ax与g(x)=logax(a0,且a1)关于y=x分离,则a的取值范围是三、解答题19已知函数()(1)求的单调区间和极值;(2)求在上的最小值(3)设,若对及有恒成立,求实数的取值范围20在直角坐标系xOy中,曲线C1的参数方程为C1:为参数),曲线C2: =1()在以O为极点,x轴的正半轴为极轴的极坐标系中,求C1,C2的极坐标方程;()射线=(0)与C1的异于极点的交点为A,与C2的交点为B,求|AB| 21某公司制定了一个激励销售人员的奖励方案:当销售利润不超过8万元时,按销售利润的15%进行奖励;当销售利润超过8万元时,若超出A万元,则超出部分按log5(2A+1)进行奖励记奖金为y(单位:万元),销售利润为x(单位:万元)(1)写出奖金y关于销售利润x的关系式;(2)如果业务员小江获得3.2万元的奖金,那么他的销售利润是多少万元?22(本小题满分12分)如图,在四棱锥中,底面是菱形,且点是棱的中点,平面与棱交于点(1)求证:;(2)若,且平面平面,求平面与平面所成的锐二面角的余弦值【命题意图】本小题主要考查空间直线与平面,直线与直线垂直的判定,二面角等基础知识,考查空间想象能力,推理论证能力,运算求解能力,以及数形结合思想、化归与转化思想.23某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元)24已知函数f(x)=(1)求函数f(x)的最小正周期及单调递减区间;(2)当时,求f(x)的最大值,并求此时对应的x的值 青阳县三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】A【解析】解:(cosxsinx)=sinxcosx,=2故选A2 【答案】D【解析】解:函数f(x)=(x3)ex,f(x)=ex+(x3)ex=(x2)ex,令f(x)0,即(x2)ex0,x20,解得x2,函数f(x)的单调递增区间是(2,+)故选:D【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目3 【答案】A【解析】试题分析:根据与相邻的数是,而与相邻的数有,所以是相邻的数,故“?”表示的数是,故选A考点:几何体的结构特征4 【答案】C【解析】解:Ay=|x|,定义域为R,y=()2=x,定义域为x|x0,定义域不同,不能表示同一函数By=lgx2,的定义域为x|x0,y=2lgx的定义域为x|x0,所以两个函数的定义域不同,所以不能表示同一函数C两个函数的定义域都为x|x0,对应法则相同,能表示同一函数D两个函数的定义域不同,不能表示同一函数故选:C【点评】本题主要考查判断两个函数是否为同一函数,判断的标准就是判断两个函数的定义域和对应法则是否一致,否则不是同一函数5 【答案】B 【解析】考点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义.6 【答案】C【解析】画出可行域如图所示,要使目标函数取得最大值时有唯一的最优解,则需直线过点时截距最大,即最大,此时即可.7 【答案】B【解析】解:a=1,b=4,C=60,由余弦定理可得:c=故选:B8 【答案】A【解析】解:如图设切点分别为M,N,Q,则PF1F2的内切圆的圆心的横坐标与Q横坐标相同由双曲线的定义,PF1PF2=2a由圆的切线性质PF1PF2=FIMF2N=F1QF2Q=2a,F1Q+F2Q=F1F2=2c,F2Q=ca,OQ=a,Q横坐标为a故选A【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义9 【答案】A【解析】解:函数f(x)=,f()=2,=f(2)=32=故选:A10【答案】B【解析】解:由f(x)在上是减函数,知f(x)=3x2+2bx+c0,x,则15+2b+2c0b+c故选B11【答案】【解析】选A.设球O的半径为R,矩形ABCD的长,宽分别为a,b,则有a2b24R22ab,ab2R2,又V四棱锥PABCDS矩形ABCDPOabRR3.R318,则R3,球O的表面积为S4R236,选A.12【答案】B【解析】试题分析:由,即整式的值与函数的值符号相反,当时,;当时,结合图象即得考点:1、函数的单调性;2、函数的奇偶性;3、不等式.二、填空题13【答案】【解析】111试题分析:根据题意设租赁甲设备,乙设备,则,求目标函数的最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值.1111考点:简单线性规划.【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产天,该公司所需租赁费为元,则,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值.14【答案】114 【解析】解:根据题目要求得出:当53的两个面叠合时,所得新的四棱柱的表面积最大,其表面积为(54+55+34)2=114故答案为:114【点评】本题考查了空间几何体的性质,运算公式,学生的空间想象能力,属于中档题,难度不大,学会分析判断解决问题15【答案】0,1 【解析】解:=+=+,01,+,当0时,0,+1,故y=0;当=时,=0, +=1,故y=1;1时,0,1+,故y=1+1=0;故函数的值域为0,1故答案为:0,1【点评】本题考查了学生的化简运算能力及分类讨论的思想应用16【答案】4,16 【解析】解:直线l:(t为参数),化为普通方程是=,即y=tanx+1;圆C的参数方程(为参数),化为普通方程是(x2)2+(y1)2=64;画出图形,如图所示;直线过定点(0,1),直线被圆截得的弦长的最大值是2r=16,最小值是2=2=2=4弦长的取值范围是4,16故答案为:4,16【点评】本题考查了直线与圆的参数方程的应用问题,解题时先把参数方程化为普通方程,再画出图形,数形结合,容易解答本题17【答案】4 【解析】解:将代入线性回归方程可得9=1+2b,b=4故答案为:4【点评】本题考查线性回归方程,考查计算能力,属于基础题18【答案】(,+) 【解析】解:由题意,a1故问题等价于axx(a1)在区间(0,+)上恒成立构造函数f(x)=axx,则f(x)=axlna1,由f(x)=0,得x=loga(logae),xloga(logae)时,f(x)0,f(x)递增;0xloga(logae),f(x)0,f(x)递减则x=loga(logae)时,函数f(x)取到最小值,故有loga(logae)0,解得a故答案为:(,+)【点评】本题考查恒成立问题关键是将问题等价转化,从而利用导数求函数的最值求出参数的范围三、解答题19【答案】(1)的单调递增区间为,单调递减区间为,无极大值;(2)时,时,时,;(3).【解析】(2)当,即时,在上递增,;当,即时,在上递减,;当,即时,在上递减,在上递增,(3),由,得,当时,;当时,在上递减,在递增,故,又,当时,对恒成立等价于;又对恒成立,故1考点:1、利用导数研究函数的单调性进而求函数的最值;2、不等式恒成立问题及分类讨论思想的应用.【方法点睛】本题主要考查利用导数研究函数的单调性进而求函数的最值、不等式恒成立问题及分类讨论思想的应用.属于难题. 数学中常见的思想方法有:函数与方程的思想、分类讨论思想、转化与划归思想、数形结合思想、建模思想等等,分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.本题(2)就是根据这种思想讨论函数单调区间的.20【答案】 【解析】解:()曲线为参数)可化为普通方程:(x1)2+y2=1,由可得曲线C1的极坐标方程为=2cos,曲线C2的极坐标方程为2(1+sin2)=2()射线与曲线C1的交点A的极径为,射线与曲线C2的交点B的极径满足,解得,所以 21【答案】 【解析】解:(1)由题意,当销售利润不超过8万元时,按销售利润的1%进行奖励;当销售利润超过8万元时,若超出A万元,则超出部分按log5(2A+1)进行奖励,0x8时,y=0.15x;x8时,y=1.2+log5(2x15)奖金y关于销售利润x的关系式y=(2)由题意知1.2+log5(2x15)=3.2,解得x=20所以,小江的销售利润是20万元【点评】本题以实际问题为载体,考查函数模型的构建,考查学生的计算能力,属于中档题22【答案】【解析】平面,是平面的一个法向量,23【答案】 【解析】解:(1)投资为x万元,A产品的利润为f(x)万元,B产品的利润为g(x)万元,由题设f(x)=k1x,g(x)=k2,(k1,k20;x0)由图知f(1)=,k1=又g(4)=,k2=从而f(x)=,g(x)=(x0)(2)设A产品投入x万元,则B产品投入10x万元,设企业的利润为y万元y=f(x)+g(10x)=,(0x10),令,(0t)当t=,ymax4,此时x=3.75当A产品投入3.75万元,B产品投入6.25万元时,企业获得最大利润约为4万元【点评】本题考查利用待定系数法求函数的解析式、考查将实际问题的最值问题转化为函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年电子行业5G技术应用前景研究报告
- 2025年智能农业技术在农产品运营管理中的应用前景研究报告
- 2025年养老行业智能养老服务市场前景研究报告
- 2025年区块链技术在智能合约行业的应用与发展前景研究报告
- 2025年金属行业新材料应用前景研究报告
- 2025年电子竞技行业电子竞技市场规模与发展前景分析研究报告
- 安定区2025年甘肃定西市安定区融媒体中心选调工作人员笔试历年参考题库附带答案详解
- 宁夏2025年宁夏回族自治区生态环境厅事业单位自主公开招聘急需紧缺高层次人才公笔试历年参考题库附带答案详解
- 商洛市2025陕西商洛学院工程训练中心人员招聘考试2人笔试历年参考题库附带答案详解
- 华池县2025年甘肃庆阳华池县事业单位引进急需紧缺人才11人(第一批第三次)笔试历年参考题库附带答案详解
- 导行教育:劳动教育与思政课实践教学融合育人 论文
- 子宫内膜异位症合并不孕的手术治疗
- 八个有趣模型搞定外接球内切球问题(学生版)
- 分期贷款利息计算表
- 两篇古典英文版成语故事塞翁失马
- 名著阅读《朝花夕拾 狗猫鼠》课件-部编版语文七年级上册
- 燃气轮机介绍课件
- 2022年国家公务员考试申论真题及答案解析(地市级)
- 名师成长的路径与修炼(教师版)课件
- 西方经济学导论全套课件
- “基础教育精品课”PPT课件模板
评论
0/150
提交评论