蠡县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第1页
蠡县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第2页
蠡县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第3页
蠡县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第4页
蠡县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

蠡县高中2018-2019学年上学期高三数学期末模拟试卷含答案班级_ 座号_ 姓名_ 分数_一、选择题1 若复数z=2i ( i为虚数单位),则=( )A4+2iB20+10iC42iD2 已知偶函数f(x)=loga|xb|在(,0)上单调递增,则f(a+1)与f(b+2)的大小关系是( )Af(a+1)f(b+2)Bf(a+1)f(b+2)Cf(a+1)f(b+2)Df(a+1)f(b+2)3 设偶函数f(x)满足f(x)=2x4(x0),则x|f(x2)0=( )Ax|x2或x4Bx|x0或x4Cx|x0或x6Dx|0x4 4 如图,在等腰梯形ABCD中,AB=2DC=2,DAB=60,E为AB的中点,将ADE与BEC分别沿ED、EC向上折起,使A、B重合于点P,则PDCE三棱锥的外接球的体积为( )ABCD5 过点,的直线的斜率为,则( )A B C D6 设M=x|2x2,N=y|0y2,函数f(x)的定义域为M,值域为N,则f(x)的图象可以是( )ABCD7 已知集合M=1,4,7,MN=M,则集合N不可能是( )AB1,4CMD2,78 已知函数y=x3+ax2+(a+6)x1有极大值和极小值,则a的取值范围是( )A1a2B3a6Ca3或a6Da1或a29 已知直线xy+a=0与圆心为C的圆x2+y2+2x4y+7=0相交于A,B两点,且=4,则实数a的值为( )A或B或3C或5D3或510图 1是由哪个平面图形旋转得到的( ) A B C D 11设全集U=MN=1,2,3,4,5,MUN=2,4,则N=( )A1,2,3B1,3,5C1,4,5D2,3,412已知等比数列an的前n项和为Sn,若=4,则=( )A3B4CD13二、填空题13阅读如图所示的程序框图,则输出结果的值为 .【命题意图】本题考查程序框图功能的识别,并且与数列的前项和相互联系,突出对逻辑判断及基本运算能力的综合考查,难度中等.14已知z,为复数,i为虚数单位,(1+3i)z为纯虚数,=,且|=5,则复数=15已知tan=,tan()=,其中,均为锐角,则=16“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负现在甲乙丙三人一起玩“黑白配”游戏设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是17【泰州中学2018届高三10月月考】设二次函数(为常数)的导函数为,对任意,不等式恒成立,则的最大值为_18已知实数,满足,目标函数的最大值为4,则_【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力三、解答题19(本小题满分10分)如图O经过ABC的点B,C与AB交于E,与AC交于F,且AEAF.(1)求证EFBC;(2)过E作O的切线交AC于D,若B60,EBEF2,求ED的长20(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的参数方程为(为参数),过点的直线交曲线于两点. (1)将曲线的参数方程化为普通方程;(2)求的最值.21已知数列an的前n项和为Sn,a1=3,且2Sn=an+1+2n(1)求a2;(2)求数列an的通项公式an;(3)令bn=(2n1)(an1),求数列bn的前n项和Tn 22(本小题满分10分)已知函数f(x)|xa|xb|,(a0,b0)(1)求f(x)的最小值,并求取最小值时x的范围;(2)若f(x)的最小值为2,求证:f(x).23某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段,进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下)()体育成绩大于或等于70分的学生常被称为“体育良好”已知该校高一年级有1000名学生,试估计高一年级中“体育良好”的学生人数;()为分析学生平时的体育活动情况,现从体育成绩在和的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在的概率;()假设甲、乙、丙三人的体育成绩分别为,且分别在,三组中,其中当数据的方差最大时,写出的值(结论不要求证明)(注:,其中为数据的平均数)24【南通中学2018届高三10月月考】设,函数,其中是自然对数的底数,曲线在点处的切线方程为.()求实数、的值;()求证:函数存在极小值;()若,使得不等式成立,求实数的取值范围.蠡县高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1 【答案】A【解析】解:z=2i,=,=10=4+2i,故选:A【点评】本题考查复数的运算,注意解题方法的积累,属于基础题2 【答案】B【解析】解:y=loga|xb|是偶函数loga|xb|=loga|xb|xb|=|xb|x22bx+b2=x2+2bx+b2整理得4bx=0,由于x不恒为0,故b=0由此函数变为y=loga|x|当x(,0)时,由于内层函数是一个减函数,又偶函数y=loga|xb|在区间(,0)上递增故外层函数是减函数,故可得0a1综上得0a1,b=0a+1b+2,而函数f(x)=loga|xb|在(0,+)上单调递减f(a+1)f(b+2)故选B3 【答案】D【解析】解:偶函数f(x)=2x4(x0),故它的图象关于y轴对称,且图象经过点(2,0)、(0,3),(2,0),故f(x2)的图象是把f(x)的图象向右平移2个单位得到的,故f(x2)的图象经过点(0,0)、(2,3),(4,0),则由f(x2)0,可得 0x4,故选:D【点评】本题主要考查指数不等式的解法,函数的图象的平移规律,属于中档题4 【答案】C【解析】解:易证所得三棱锥为正四面体,它的棱长为1,故外接球半径为,外接球的体积为,故选C【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题5 【答案】【解析】考点:1.斜率;2.两点间距离.6 【答案】B【解析】解:A项定义域为2,0,D项值域不是0,2,C项对任一x都有两个y与之对应,都不符故选B【点评】本题考查的是函数三要素,即定义域、值域、对应关系的问题7 【答案】D【解析】解:MN=M,NM,集合N不可能是2,7,故选:D【点评】本题主要考查集合的关系的判断,比较基础8 【答案】C【解析】解:由于f(x)=x3+ax2+(a+6)x1,有f(x)=3x2+2ax+(a+6)若f(x)有极大值和极小值,则=4a212(a+6)0,从而有a6或a3,故选:C【点评】本题主要考查函数在某点取得极值的条件属基础题9 【答案】C【解析】解:圆x2+y2+2x4y+7=0,可化为(x+)2+(y2)2=8=4,22cosACB=4cosACB=,ACB=60圆心到直线的距离为,=,a=或5故选:C10【答案】A【解析】试题分析:由题意得,根据旋转体的概念,可知该几何体是由A选项的平面图形旋转一周得到的几何体故选A.考点:旋转体的概念.11【答案】B【解析】解:全集U=MN=1,2,3,4,5,MCuN=2,4,集合M,N对应的韦恩图为所以N=1,3,5故选B12【答案】D【解析】解:Sn为等比数列an的前n项和,=4,S4,S8S4,S12S8也成等比数列,且S8=4S4,(S8S4)2=S4(S12S8),即9S42=S4(S124S4),解得=13故选:D【点评】熟练掌握等比数列的性质是解题的关键是基础的计算题二、填空题13【答案】【解析】根据程序框图可知,其功能是求数列的前1008项的和,即.14【答案】(7i) 【解析】解:设z=a+bi(a,bR),(1+3i)z=(1+3i)(a+bi)=a3b+(3a+b)i为纯虚数,又=,|=,把a=3b代入化为b2=25,解得b=5,a=15=(7i)故答案为(7i)【点评】熟练掌握复数的运算法则、纯虚数的定义及其模的计算公式即可得出15【答案】 【解析】解:tan=,均为锐角,tan()=,解得:tan=1,=故答案为:【点评】本题考查了两角差的正切公式,掌握公式是关键,属于基础题16【答案】 【解析】解:一次游戏中,甲、乙、丙出的方法种数都有2种,所以总共有23=8种方案,而甲胜出的情况有:“甲黑乙白丙白”,“甲白乙黑丙黑”,共2种,所以甲胜出的概率为故答案为【点评】本题考查等可能事件的概率,关键是分清甲在游戏中胜出的情况数目17【答案】【解析】试题分析:根据题意易得:,由得:在R上恒成立,等价于:,可解得:,则:,令,故的最大值为考点:1.函数与导数的运用;2.恒成立问题;3.基本不等式的运用18【答案】【解析】作出可行域如图所示:作直线:,再作一组平行于的直线:,当直线经过点时,取得最大值,所以,故三、解答题19【答案】【解析】解:(1)证明:AEAF,AEFAFE.又B,C,F,E四点共圆,ABCAFE,AEFACB,又AEFAFE,EFBC. (2)由(1)与B60知ABC为正三角形,又EBEF2,AFFC2,设DEx,DFy,则AD2y,在AED中,由余弦定理得DE2AE2AD22ADAEcos A.即x2(2y)2222(2y)2,x2y242y,由切割线定理得DE2DFDC,即x2y(y2),x2y22y,由联解得y1,x,ED.20【答案】(1).(2)的最大值为,最小值为.【解析】试题解析:解:(1)曲线的参数方程为(为参数),消去参数得曲线的普通方程为 (3分)(2)由题意知,直线的参数方程为(为参数),将代入得 (6分)设对应的参数分别为,则.的最大值为,最小值为. (10分)考点:参数方程化成普通方程21【答案】 【解析】解:(1)当n=1时,2S1=2a1=a2+2,a2=41;(2)当n2时,2an=2sn2sn1=an+1+2nan2(n1)=an+1an+2,an+1=3an2,an+11=3(an1)4,an1从第二项起是公比为3的等比数列5,;(3)89得:,=,=(22n)3n4,1112【点评】本题考查等比数列的通项公式,数列的递推公式,考查“错位相减法”求数列的前n项和,考查计算能力,属于中档题22【答案】【解析】解:(1)由|xa|xb|(xa)(xb)|ab|得,当且仅当(xa)(xb)0,即bxa时,f(x)取得最小值,当xb,a时,f(x)min|ab|ab. (2)证明:由(1)知ab2,()2ab22(ab)4,2,f(x)ab2,即f(x).23【答案】【解析】【知识点】样本的数据特征古典概型【试题解析】()由折线图,知样本中体育成绩大于或等于70分的学生有人,所以该校高一年级学生中,“体育良好”的学生人数大约有人()设 “至少有1人体育成绩在”为事件,记体育成绩在的数据为,体育成绩在的数据为,则从这两组数据中随机抽取2个,所有可能的结果有10种,它们是:,而事件的结果有7种,它们是:,因此事件的概率()a,b,c的值分别是为,24【答案】();()证明见解析;().【解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论