




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷包头市外国语学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知双曲线的左、右焦点分别为,过的直线交双曲线于两点且,若,则双曲线离心率的取值范围为( ).A. B. C. D. 第卷(非选择题,共100分)2 点A是椭圆上一点,F1、F2分别是椭圆的左、右焦点,I是AF1F2的内心若,则该椭圆的离心率为( )ABCD3 已知椭圆C: +=1(ab0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若AF1B的周长为4,则C的方程为( )A +=1B +y2=1C +=1D +=14 在平面直角坐标系中,直线y=x与圆x2+y28x+4=0交于A、B两点,则线段AB的长为( )A4B4C2D25 已知函数f(x)=x4cosx+mx2+x(mR),若导函数f(x)在区间2,2上有最大值10,则导函数f(x)在区间2,2上的最小值为( )A12B10C8D66 在复平面内,复数(4+5i)i(i为虚数单位)的共轭复数对应的点位于( )A第一象限B第二象限C第三象限D第四象限7 已知,其中是实数,是虚数单位,则的共轭复数为 A、 B、 C、 D、8 若f(x)=sin(2x+),则“f(x)的图象关于x=对称”是“=”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件9 已知平面向量,若与垂直,则实数值为( )A B C D【命题意图】本题考查平面向量数量积的坐标表示等基础知识,意在考查基本运算能力10下列给出的几个关系中:;,正确的有( )个A.个 B.个 C.个 D.个11定义新运算:当ab时,ab=a;当ab时,ab=b2,则函数f(x)=(1x)x(2x),x2,2的最大值等于( )A1B1C6D1212给出下列两个结论:若命题p:x0R,x02+x0+10,则p:xR,x2+x+10;命题“若m0,则方程x2+xm=0有实数根”的逆否命题为:“若方程x2+xm=0没有实数根,则m0”;则判断正确的是( )A对错B错对C都对D都错二、填空题13已知定义在R上的奇函数满足,且时,则的值为 14设平面向量,满足且,则 ,的最大值为 .【命题意图】本题考查平面向量数量积等基础知识,意在考查运算求解能力.15一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为_16如图,正方形的边长为1,它是水平放置的一个平面图形的直观图,则原图的周长为 111117已知函数f(x)=,若关于x的方程f(x)=k有三个不同的实根,则实数k的取值范围是18已知直线:()被圆:所截的弦长是圆心到直线的距离的2倍,则 .三、解答题19已知二阶矩阵M有特征值1=4及属于特征值4的一个特征向量=并有特征值2=1及属于特征值1的一个特征向量=, =()求矩阵M;()求M5 20如图1,在RtABC中,C=90,BC=3,AC=6,D、E分别是AC、AB上的点,且DEBC,将ADE沿DE折起到A1DE的位置,使A1DCD,如图2()求证:平面A1BC平面A1DC;()若CD=2,求BD与平面A1BC所成角的正弦值;()当D点在何处时,A1B的长度最小,并求出最小值21如图在长方形ABCD中,是CD的中点,M是线段AB上的点,(1)若M是AB的中点,求证:与共线;(2)在线段AB上是否存在点M,使得与垂直?若不存在请说明理由,若存在请求出M点的位置;(3)若动点P在长方形ABCD上运动,试求的最大值及取得最大值时P点的位置22已知圆C:(x1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A,B两点(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,求直线l的方程23已知等差数列的公差,()求数列的通项公式;()设,记数列前n项的乘积为,求的最大值24已知曲线C的参数方程为(y为参数),过点A(2,1)作平行于=的直线l 与曲线C分别交于B,C两点(极坐标系的极点、极轴分别与直角坐标系的原点、x轴的正半轴重合)()写出曲线C的普通方程;()求B、C两点间的距离包头市外国语学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C 【解析】如图,由双曲线的定义知,两式相加得 ,又, , , ,在中,将代入得 ,化简得: ,令,易知在上单调递减,故 ,故答案 选C.2 【答案】B【解析】解:设AF1F2的内切圆半径为r,则SIAF1=|AF1|r,SIAF2=|AF2|r,SIF1F2=|F1F2|r,|AF1|r=2|F1F2|r|AF2|r,整理,得|AF1|+|AF2|=2|F1F2|a=2,椭圆的离心率e=故选:B3 【答案】A【解析】解:AF1B的周长为4,AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,4a=4,a=,离心率为,c=1,b=,椭圆C的方程为+=1故选:A【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题4 【答案】A【解析】解:圆x2+y28x+4=0,即圆(x4)2+y2 =12,圆心(4,0)、半径等于2由于弦心距d=2,弦长为2=4,故选:A【点评】本题主要考查求圆的标准方程的方法,直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,属于基础题5 【答案】C【解析】解:由已知得f(x)=4x3cosxx4sinx+2mx+1,令g(x)=4x3cosxx4sinx+2mx是奇函数,由f(x)的最大值为10知:g(x)的最大值为9,最小值为9,从而f(x)的最小值为9+1=8故选C【点评】本题考查了导数的计算、奇函数的最值的性质属于常规题,难度不大6 【答案】B【解析】解:(4+5i)i=54i,复数(4+5i)i的共轭复数为:5+4i,在复平面内,复数(4+5i)i的共轭复数对应的点的坐标为:(5,4),位于第二象限故选:B7 【答案】D【解析】故选D8 【答案】B【解析】解:若f(x)的图象关于x=对称,则2+=+k,解得=+k,kZ,此时=不一定成立,反之成立,即“f(x)的图象关于x=对称”是“=”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,结合三角函数的对称性是解决本题的关键9 【答案】A10【答案】C【解析】试题分析:由题意得,根据集合之间的关系可知:和是正确的,故选C.考点:集合间的关系.11【答案】C【解析】解:由题意知当2x1时,f(x)=x2,当1x2时,f(x)=x32,又f(x)=x2,f(x)=x32在定义域上都为增函数,f(x)的最大值为f(2)=232=6故选C12【答案】C【解析】解:命题p是一个特称命题,它的否定是全称命题,p是全称命题,所以正确根据逆否命题的定义可知正确故选C【点评】考查特称命题,全称命题,和逆否命题的概念二、填空题13【答案】【解析】1111试题分析:,所以考点:利用函数性质求值14【答案】,. 【解析】,而,当且仅当与方向相同时等号成立,故填:,.15【答案】【解析】【知识点】空间几何体的三视图与直观图【试题解析】正方体中,BC中点为E,CD中点为F,则截面为即截去一个三棱锥其体积为:所以该几何体的体积为:故答案为:16【答案】【解析】考点:平面图形的直观图17【答案】(0,1) 【解析】解:画出函数f(x)的图象,如图示:令y=k,由图象可以读出:0k1时,y=k和f(x)有3个交点,即方程f(x)=k有三个不同的实根,故答案为(0,1)【点评】本题考查根的存在性问题,渗透了数形结合思想,是一道基础题18【答案】9【解析】考点:直线与圆的位置关系【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是,R是圆的半径,d是圆心到直线的距离.三、解答题19【答案】 【解析】解:()设M=则=4=,又=(1)=,由可得a=1,b=2,c=3,d=2,M=;()易知=0+(1),M5=(1)6=【点评】本题考查矩阵的运算法则,考查学生的计算能力,比较基础 20【答案】【解析】【分析】()在图1中,ABC中,由已知可得:ACDE在图2中,DEA1D,DEDC,即可证明DE平面A1DC,再利用面面垂直的判定定理即可证明()如图建立空间直角坐标系,设平面A1BC的法向量为,利用,BE与平面所成角的正弦值为()设CD=x(0x6),则A1D=6x,利用=(0x6),即可得出【解答】()证明:在图1中,ABC中,DEBC,ACBC,则ACDE,在图2中,DEA1D,DEDC,又A1DDC=D,DE平面A1DC,DEBC,BC平面A1DC,BC平面A1BC,平面A1BC平面A1DC()解:如图建立空间直角坐标系:A1(0,0,4)B(3,2,0),C(0,2,0),D(0,0,0),E(2,0,0)则,设平面A1BC的法向量为则,解得,即则BE与平面所成角的正弦值为()解:设CD=x(0x6),则A1D=6x,在(2)的坐标系下有:A1(0,0,6x),B(3,x,0),=(0x6),即当x=3时,A1B长度达到最小值,最小值为21【答案】 【解析】(1)证明:如图,以AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,当M是AB的中点时,A(0,0),N(1,1),C(2,1),M(1,0),由,可得与共线;(2)解:假设线段AB上是否存在点M,使得与垂直,设M(t,0)(0t2),则B(2,0),D(0,1),M(t,0),由=2(t2)1=0,解得t=,线段AB上存在点,使得与垂直;(3)解:由图看出,当P在线段BC上时,在上的投影最大,则有最大值为4【点评】本题考查平面向量的数量积运算,考查了向量在向量方向上的投影,体现了数形结合的解题思想方法,是中档题22【答案】【解析】【分析】(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l的方程;(2)当弦AB被点P平分时,求出直线的斜率,即可写出直线l的方程;【解答】解:(1)已知圆C:(x1)2+y2=9的圆心为C(1,0),因为直线l过点P,C,所以直线l的斜率为2,所以直线l的方程为y=2(x1),即2xy2=0(2)当弦AB被点P平分时,lPC,直线l的方程为,即x+2y6=0 23【答案】【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 养护安全培训工作总结课件
- 养小鸭的课件
- 初级焊工培训安全记录课件
- 化学药剂使用安全培训课件
- 化学安全知识培训总结课件
- 化学安全培训题库课件
- 创建无烟单位签到课件
- 化学品安全培训演练医院课件
- 先抑后扬写作讲评课件
- 内燃机车总体课件
- 2025劳动合同书(示范文本)
- 绳索在消防领域的技术革新-全面剖析
- 慢阻肺护理新进展
- 中秋节知识课件
- 110kV变电站及110kV输电线路运维投标技术方案
- 人教版(新教材)高中生物选择性必修1课件3:4 3 免疫失调
- 《SLT 582-2025水工金属结构制造安装质量检验检测规程》知识培训
- “燕园元培杯”2023-2024学年全国中学生地球科学奥林匹克竞赛决赛试题详解
- 中国血脂管理指南(基层版+2024年)解读
- 分子诊断技术在感染性疾病中的应用-深度研究
- 《智能AI分析深度解读报告》课件
评论
0/150
提交评论