高数函数的连续性.ppt_第1页
高数函数的连续性.ppt_第2页
高数函数的连续性.ppt_第3页
高数函数的连续性.ppt_第4页
高数函数的连续性.ppt_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、函数的连续性的概念 二、函数的间断点 四、小结 思考题 第七节 函数的连续性 三、初等函数的连续性 一、函数的连续性(continuity) 1.函数的增量(increment) 注意: 2.连续的定义 即:函数在某点连续等价于函数在该点的极 限存在且等于该点的函数值. 例1 证 由定义2知 例2 证 3.单侧连续 定理 例3 解 右连续但不左连续 , 4.连续函数与连续区间 在区间上每一点都连续的函数,叫做在该区间上 的连续函数,或者说函数在该区间上连续. 连续函数的图形是一条连续而不间断的曲线. 5.基本初等函数的连续性 二、函数的间断点(points of discontinuity) 1.可去间断点(a removable discontinuity) 例4 解 注意 可去间断点只要改变或者补充可去间断 处函数的定义, 则可使其变为连续点. 如例4中, 例5 解 2.跳跃间断点 跳跃间断点与可去间断点统称为第一类间断点. 特点 左右极限相等,则为可去间断点; 左右极限不相等,则为跳跃间断点 例5中的间断点为跳跃间断点 3.第二类间断点 例6 解 例7 解 注意 函数的间断点可能不只是个别的几个点. 这时也称其为振荡间断点 狄利克雷函数(Dirichlets function) 在定义域R内每一点处都间断,且都是第二类间 断点. 仅在x=0处连续, 其余各点处处间断. 在定义域 R内每一点处都间断, 但其绝对值处 处连续. 判断下列间断点类型: 例8 解 定理1 例如, 三、初等函数的连续性 1. 连续函数的和、差、积、商的连续性 定理2 严格单调递增(递减)的连续函数必有 严格单调递增(递减)的连续反函数 例如, 反三角函数在其定义域内皆连续. 2. 反函数与复合函数的连续性 定理 例9 定理 一切初等函数在其定义区间内都是 连续的. 定义区间是指包含在定义域内的区间. . 初等函数的连续性 1. 初等函数仅在其定义区间内连续, 在 其定义域内不一定连续; 例如, 这些孤立点的去心邻域内没有定义. 注意 例10 例11 解 解 注意 2. 初等函数在连续点求极限可用代入法. 四、小结 思考题 1.函数在一点连续必须满足的三个条件; 3.间断点的分类与判别; 2.区间上的连续函数; 第一类间断点:可去型,跳跃型. 第二类间断点:无穷型,振荡型. 间断点 (见下图) 可去型 第一类间断点 o y x 跳跃型 无穷型振荡型 第二类间断点 o y x o y x o y x 4. 初等函数的连续性 (1)初等函数在其定义区间上连续; (2)初等函数的连续性在求极限时的应用: 代

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论