屯留县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
屯留县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
屯留县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
屯留县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
屯留县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

屯留县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知函数f(x)=,则=( )ABC9D92 已知m,n为不同的直线,为不同的平面,则下列说法正确的是( )Am,nmnBm,nmnCm,n,mnDn,n3 一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )A3BC2D64 已知双曲线C:=1(a0,b0)的左、右焦点分别为F1,F2,过点F1作直线lx轴交双曲线C的渐近线于点A,B若以AB为直径的圆恰过点F2,则该双曲线的离心率为( )ABC2D5 下列哪组中的两个函数是相等函数( )A BC D6 设、是两个非零向量,则“(+)2=|2+|2”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件7 设i是虚数单位,是复数z的共轭复数,若z=2(+i),则z=( )A1iB1+iC1+iD1i8 设集合,则( )ABCD9 若动点分别在直线: 和:上移动,则中点所在直线方程为( )A B C D 10已知双曲线,分别在其左、右焦点,点为双曲线的右支上的一点,圆为三角形的内切圆,所在直线与轴的交点坐标为,与双曲线的一条渐近线平行且距离为,则双曲线的离心率是( )A B2 C D11函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)=( )Aex+1Bex1Cex+1Dex112已知,若存在,使得,则的取值范围是( )A B C. D二、填空题13函数f(x)=log(x22x3)的单调递增区间为14已知函数的三个零点成等比数列,则 .15在等差数列中,公差为,前项和为,当且仅当时取得最大值,则的取值范围为_.16甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一个红球的概率为 17如图,是一回形图,其回形通道的宽和OB1的长均为1,回形线与射线OA交于A1,A2,A3,若从点O到点A3的回形线为第1圈(长为7),从点A3到点A2的回形线为第2圈,从点A2到点A3的回形线为第3圈依此类推,第8圈的长为 18在(1+x)(x2+)6的展开式中,x3的系数是三、解答题19(本小题满分12分)已知圆:的圆心在第二象限,半径为,且圆与直线及轴都相切.(1)求;(2)若直线与圆交于两点,求.20已知梯形ABCD中,ABCD,B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周的都如图所示的几何体()求几何体的表面积()判断在圆A上是否存在点M,使二面角MBCD的大小为45,且CAM为锐角若存在,请求出CM的弦长,若不存在,请说明理由21双曲线C:x2y2=2右支上的弦AB过右焦点F(1)求弦AB的中点M的轨迹方程(2)是否存在以AB为直径的圆过原点O?若存在,求出直线AB的斜率K的值若不存在,则说明理由22已知椭圆C: +=1(ab0)的左,右焦点分别为F1,F2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切()求椭圆C的方程;()如图,若斜率为k(k0)的直线l与x轴,椭圆C顺次交于P,Q,R(P点在椭圆左顶点的左侧)且RF1F2=PF1Q,求证:直线l过定点,并求出斜率k的取值范围23已知点(1,)是函数f(x)=ax(a0且a1)的图象上一点,等比数列an的前n项和为f(n)c,数列bn(bn0)的首项为c,且前n项和Sn满足SnSn1=+(n2)记数列前n项和为Tn,(1)求数列an和bn的通项公式;(2)若对任意正整数n,当m1,1时,不等式t22mt+Tn恒成立,求实数t的取值范围(3)是否存在正整数m,n,且1mn,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由 24已知F1,F2分别是椭圆=1(9m0)的左右焦点,P是该椭圆上一定点,若点P在第一象限,且|PF1|=4,PF1PF2()求m的值;()求点P的坐标屯留县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】A【解析】解:由题意可得f()=2,f(f()=f(2)=32=,故选A2 【答案】D【解析】解:在A选项中,可能有n,故A错误;在B选项中,可能有n,故B错误;在C选项中,两平面有可能相交,故C错误;在D选项中,由平面与平面垂直的判定定理得D正确故选:D【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养3 【答案】C【解析】解:椭圆的半焦距为2,离心率e=,c=2,a=3,b=2b=2故选:C【点评】本题主要考查了椭圆的简单性质属基础题4 【答案】D【解析】解:设F1(c,0),F2(c,0),则l的方程为x=c,双曲线的渐近线方程为y=x,所以A(c, c)B(c, c)AB为直径的圆恰过点F2F1是这个圆的圆心AF1=F1F2=2cc=2c,解得b=2a离心率为=故选D【点评】本题考查了双曲线的性质,如焦点坐标、离心率公式5 【答案】D111【解析】考点:相等函数的概念.6 【答案】C【解析】解:设a、b是两个非零向量,“(a+b)2=|a|2+|b|2”(a+b)2=|a|2+|b|2+2ab=|a|2+|b|2ab=0,即ab;abab=0即(a+b)2=|a|2+|b|2所以“(a+b)2=|a|2+|b|2”是“ab”的充要条件故选C7 【答案】B【解析】解:设z=a+bi(a,bR),则=abi,由z=2(+i),得(a+bi)(abi)=2a+(b1)i,整理得a2+b2=2a+2(b1)i则,解得所以z=1+i故选B【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题8 【答案】C【解析】送分题,直接考察补集的概念,故选C。9 【答案】【解析】考点:直线方程10【答案】C【解析】试题分析:由题意知到直线的距离为,那么,得,则为等轴双曲线,离心率为.故本题答案选C. 1考点:双曲线的标准方程与几何性质【方法点睛】本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造的关系,处理方法与椭圆相同,但需要注意双曲线中与椭圆中的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出的值,可得;(2)建立的齐次关系式,将用表示,令两边同除以或化为的关系式,解方程或者不等式求值或取值范围.11【答案】D【解析】解:函数y=ex的图象关于y轴对称的图象的函数解析式为y=ex,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex的图象关于y轴对称,所以函数f(x)的解析式为y=e(x+1)=ex1即f(x)=ex1故选D12【答案】A 【解析】考点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值. 【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题利用导数研究函数的单调性进一步求函数最值的步骤:确定函数的定义域;对求导;令,解不等式得的范围就是递增区间;令,解不等式得的范围就是递减区间;根据单调性求函数的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小). 二、填空题13【答案】(,1) 【解析】解:函数的定义域为x|x3或x1令t=x22x3,则y=因为y=在(0,+)单调递减t=x22x3在(,1)单调递减,在(3,+)单调递增由复合函数的单调性可知函数的单调增区间为(,1)故答案为:(,1)14【答案】考点:三角函数的图象与性质,等比数列的性质,对数运算【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题15【答案】【解析】试题分析:当且仅当时,等差数列的前项和取得最大值,则,即,解得:.故本题正确答案为.考点:数列与不等式综合.16【答案】【解析】【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求另外在确定基本事件时,可以看成是有序的,如与不同;有时也可以看成是无序的,如相同(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用求解较好17【答案】63 【解析】解:第一圈长为:1+1+2+2+1=7第二圈长为:2+3+4+4+2=15第三圈长为:3+5+6+6+3=23第n圈长为:n+(2n1)+2n+2n+n=8n1故n=8时,第8圈的长为63,故答案为:63【点评】本题主要考查了归纳推理,解答的一般步骤是:先通过观察第1,2,3,圈的长的情况发现某些相同性质,再从相同性质中推出一个明确表达的一般性结论,最后将一般性结论再用于特殊情形18【答案】20 【解析】解:(1+x)(x2+)6的展开式中,x3的系数是由(x2+)6的展开式中x3与1的积加上x2与x的积组成;又(x2+)6的展开式中,通项公式为 Tr+1=x123r,令123r=3,解得r=3,满足题意;令123r=2,解得r=,不合题意,舍去;所以展开式中x3的系数是=20故答案为:20三、解答题19【答案】(1) ,;(2).【解析】试题解析:(1)由题意,圆方程为,且,圆与直线及轴都相切,圆方程为,化为一般方程为,.(2)圆心到直线的距离为,.考点:圆的方程;2.直线与圆的位置关系.120【答案】 【解析】解:(1)根据题意,得;该旋转体的下半部分是一个圆锥,上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,其表面积为S=422=8,或S=42+(422)+2=8;(2)作MEAC,EFBC,连结FM,易证FMBC,MFE为二面角MBCD的平面角,设CAM=,EM=2sin,EF=,tanMFE=1,tan=,CM=2【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目21【答案】 【解析】解:(1)设M(x,y),A(x1,y1)、B(x2,y2),则x12y12=2,x22y22=2,两式相减可得(x1+x2)(x1x2)(y1+y2)(y1y2)=0,2x(x1x2)2y(y1y2)=0,=,双曲线C:x2y2=2右支上的弦AB过右焦点F(2,0),化简可得x22xy2=0,(x2) (2)假设存在,设A(x1,y1),B(x2,y2),lAB:y=k(x2)由已知OAOB得:x1x2+y1y2=0,所以(k21)联立得:k2+1=0无解所以这样的圆不存在22【答案】 【解析】()解:椭圆的左,右焦点分别为F1(c,0),F2(c,0),椭圆的离心率为,即有=,即a=c,b=c,以原点为圆心,椭圆的短半轴长为半径的圆方程为x2+y2=b2,直线y=x+与圆相切,则有=1=b,即有a=,则椭圆C的方程为+y2=1;()证明:设Q(x1,y1),R(x2,y2),F1(1,0),由RF1F2=PF1Q,可得直线QF1和RF1关于x轴对称,即有+=0,即+=0,即有x1y2+y2+x2y1+y1=0,设直线PQ:y=kx+t,代入椭圆方程,可得(1+2k2)x2+4ktx+2t22=0,判别式=16k2t24(1+2k2)(2t22)0,即为t22k21x1+x2=,x1x2=,y1=kx1+t,y2=kx2+t,代入可得,(k+t)(x1+x2)+2t+2kx1x2=0,将代入,化简可得t=2k,则直线l的方程为y=kx+2k,即y=k(x+2)即有直线l恒过定点(2,0)将t=2k代入,可得2k21,解得k0或0k则直线l的斜率k的取值范围是(,0)(0,)【点评】本题考查椭圆的方程和性质,主要是离心率的运用,注意运用直线和圆相切的条件,联立直线方程和椭圆方程,运用韦达定理,考查化简整理的运算能力,属于中档题和易错题23【答案】 【解析】解:(1)因为f(1)=a=,所以f(x)=,所以,a2=f(2)cf(1)c=,a3=f(3)cf(2)c=因为数列an是等比数列,所以,所以c=1又公比q=,所以;由题意可得: =,又因为bn0,所以;所以数列是以1为首项,以1为公差的等差数列,并且有;当n2时,bn=SnSn1=2n1;所以bn=2n1(2)因为数列前n项和为Tn,所以 =;因为当m1,1时,不等式恒成立,所以只要当m1,1时,不等式t22mt0恒成立即可,设g(m)=2tm+t2,m1,1,所以只要一次函数g(m)0在m1,1上恒成立即可,所以,解得t2或t2,所以实数t的取值范围为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论